A328867
Heinz numbers of integer partitions in which no two distinct parts are relatively prime.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 64, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 128, 129, 131, 133, 137, 139, 147, 149
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
11: {5}
13: {6}
16: {1,1,1,1}
17: {7}
19: {8}
21: {2,4}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
32: {1,1,1,1,1}
These are the Heinz numbers of the partitions counted by
A328673.
The relatively prime version is
A328868.
A ranking using binary indices is
A326910.
The version for non-isomorphic multiset partitions is
A319752.
The version for divisibility (instead of relative primality) is
A316476.
A337667
Number of compositions of n where any two parts have a common divisor > 1.
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 5, 1, 8, 4, 17, 1, 38, 1, 65, 19, 128, 1, 284, 1, 518, 67, 1025, 1, 2168, 16, 4097, 256, 8198, 1, 16907, 7, 32768, 1027, 65537, 79, 133088, 19, 262145, 4099, 524408, 25, 1056731, 51, 2097158, 16636, 4194317, 79, 8421248, 196, 16777712
Offset: 0
The a(2) = 1 through a(10) = 17 compositions (A = 10):
2 3 4 5 6 7 8 9 A
22 24 26 36 28
33 44 63 46
42 62 333 55
222 224 64
242 82
422 226
2222 244
262
424
442
622
2224
2242
2422
4222
22222
A337604 counts these compositions of length 3.
A337694 gives Heinz numbers of the unordered version.
A318717 is the unordered strict case.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
-
stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],stabQ[#,CoprimeQ]&]],{n,0,15}]
A302568
Odd numbers that are either prime or whose prime indices are pairwise coprime.
Original entry on oeis.org
3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 83, 85, 89, 93, 95, 97, 101, 103, 107, 109, 113, 119, 123, 127, 131, 137, 139, 141, 143, 145, 149, 151, 155, 157, 161, 163, 165, 167, 173, 177, 179
Offset: 1
The sequence of terms together with their prime indices begins:
3: {2} 43: {14} 89: {24} 141: {2,15}
5: {3} 47: {15} 93: {2,11} 143: {5,6}
7: {4} 51: {2,7} 95: {3,8} 145: {3,10}
11: {5} 53: {16} 97: {25} 149: {35}
13: {6} 55: {3,5} 101: {26} 151: {36}
15: {2,3} 59: {17} 103: {27} 155: {3,11}
17: {7} 61: {18} 107: {28} 157: {37}
19: {8} 67: {19} 109: {29} 161: {4,9}
23: {9} 69: {2,9} 113: {30} 163: {38}
29: {10} 71: {20} 119: {4,7} 165: {2,3,5}
31: {11} 73: {21} 123: {2,13} 167: {39}
33: {2,5} 77: {4,5} 127: {31} 173: {40}
35: {3,4} 79: {22} 131: {32} 177: {2,17}
37: {12} 83: {23} 137: {33} 179: {41}
41: {13} 85: {3,7} 139: {34} 181: {42}
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset systems.
03: {{1}}
05: {{2}}
07: {{1,1}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
19: {{1,1,1}}
23: {{2,2}}
29: {{1,3}}
31: {{5}}
33: {{1},{3}}
35: {{2},{1,1}}
37: {{1,1,2}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
51: {{1},{4}}
53: {{1,1,1,1}}
A007359 counts partitions with these Heinz numbers.
A337694 is the pairwise non-coprime instead of pairwise coprime version.
A337984 does not include the primes.
A305713 counts pairwise coprime strict partitions.
A337561 counts pairwise coprime strict compositions.
A337697 counts pairwise coprime compositions with no 1's.
Cf.
A005408,
A051424,
A056239,
A087087,
A112798,
A200976,
A302797,
A303282,
A304711,
A335235,
A338468.
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1,400,2],Or[PrimeQ[#],CoprimeQ@@primeMS[#]]&]
A337694
Numbers with no two relatively prime prime indices.
Original entry on oeis.org
1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167, 169, 171, 173, 179, 181, 183, 185, 189, 191, 193, 197, 199
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 37: {12} 79: {22} 121: {5,5}
3: {2} 39: {2,6} 81: {2,2,2,2} 125: {3,3,3}
5: {3} 41: {13} 83: {23} 127: {31}
7: {4} 43: {14} 87: {2,10} 129: {2,14}
9: {2,2} 47: {15} 89: {24} 131: {32}
11: {5} 49: {4,4} 91: {4,6} 133: {4,8}
13: {6} 53: {16} 97: {25} 137: {33}
17: {7} 57: {2,8} 101: {26} 139: {34}
19: {8} 59: {17} 103: {27} 147: {2,4,4}
21: {2,4} 61: {18} 107: {28} 149: {35}
23: {9} 63: {2,2,4} 109: {29} 151: {36}
25: {3,3} 65: {3,6} 111: {2,12} 157: {37}
27: {2,2,2} 67: {19} 113: {30} 159: {2,16}
29: {10} 71: {20} 115: {3,9} 163: {38}
31: {11} 73: {21} 117: {2,2,6} 167: {39}
A302696 and
A302569 are pairwise coprime instead of pairwise non-coprime.
A328867 looks at distinct prime indices.
A337666 is the version for standard compositions.
A101268 counts pairwise coprime or singleton compositions.
A318717 counts strict pairwise non-coprime partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
A337667 counts pairwise non-coprime compositions.
Cf.
A051185,
A051424,
A056239,
A112798,
A220377,
A284825,
A302797,
A303282,
A305843,
A319752,
A336737,
A337599,
A337604,
A337605.
-
filter:= proc(n) local F,i,j,np;
if n::even and n>2 then return false fi;
F:= map(t -> numtheory:-pi(t[1]), ifactors(n)[2]);
np:= nops(F);
for i from 1 to np-1 do
for j from i+1 to np do
if igcd(F[i],F[j])=1 then return false fi
od od;
true
end proc:
select(filter, [$1..300]); # Robert Israel, Oct 06 2020
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And];
Select[Range[100],stabQ[primeMS[#],CoprimeQ]&]
A337666
Numbers k such that any two parts of the k-th composition in standard order (A066099) have a common divisor > 1.
Original entry on oeis.org
0, 2, 4, 8, 10, 16, 32, 34, 36, 40, 42, 64, 128, 130, 136, 138, 160, 162, 168, 170, 256, 260, 288, 292, 512, 514, 520, 522, 528, 544, 546, 552, 554, 640, 642, 648, 650, 672, 674, 680, 682, 1024, 2048, 2050, 2052, 2056, 2058, 2080, 2082, 2084, 2088, 2090, 2176
Offset: 1
The sequence together with the corresponding compositions begins:
0: () 138: (4,2,2) 546: (4,4,2)
2: (2) 160: (2,6) 552: (4,2,4)
4: (3) 162: (2,4,2) 554: (4,2,2,2)
8: (4) 168: (2,2,4) 640: (2,8)
10: (2,2) 170: (2,2,2,2) 642: (2,6,2)
16: (5) 256: (9) 648: (2,4,4)
32: (6) 260: (6,3) 650: (2,4,2,2)
34: (4,2) 288: (3,6) 672: (2,2,6)
36: (3,3) 292: (3,3,3) 674: (2,2,4,2)
40: (2,4) 512: (10) 680: (2,2,2,4)
42: (2,2,2) 514: (8,2) 682: (2,2,2,2,2)
64: (7) 520: (6,4) 1024: (11)
128: (8) 522: (6,2,2) 2048: (12)
130: (6,2) 528: (5,5) 2050: (10,2)
136: (4,4) 544: (4,6) 2052: (9,3)
A337604 counts these compositions of length 3.
A337694 is the version for Heinz numbers of partitions.
A051185 and
A305843 (covering) count pairwise intersecting set-systems.
A101268 counts pairwise coprime or singleton compositions.
A318717 counts strict pairwise non-coprime partitions.
A327516 counts pairwise coprime partitions.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
All of the following pertain to compositions in standard order (
A066099):
-
A233564 ranks strict compositions.
-
A272919 ranks constant compositions.
-
A291166 appears to rank relatively prime compositions.
-
A326674 is greatest common divisor.
-
A333227 ranks coprime (Mathematica definition) compositions.
-
A333228 ranks compositions with distinct parts coprime.
-
A335235 ranks singleton or coprime compositions.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
Select[Range[0,1000],stabQ[stc[#],CoprimeQ]&]
A337984
Heinz numbers of pairwise coprime integer partitions with no 1's, where a singleton is not considered coprime.
Original entry on oeis.org
15, 33, 35, 51, 55, 69, 77, 85, 93, 95, 119, 123, 141, 143, 145, 155, 161, 165, 177, 187, 201, 205, 209, 215, 217, 219, 221, 249, 253, 255, 265, 287, 291, 295, 309, 323, 327, 329, 335, 341, 355, 381, 385, 391, 395, 403, 407, 411, 413, 415, 437, 447, 451, 465
Offset: 1
The sequence of terms together with their prime indices begins:
15: {2,3} 155: {3,11} 265: {3,16}
33: {2,5} 161: {4,9} 287: {4,13}
35: {3,4} 165: {2,3,5} 291: {2,25}
51: {2,7} 177: {2,17} 295: {3,17}
55: {3,5} 187: {5,7} 309: {2,27}
69: {2,9} 201: {2,19} 323: {7,8}
77: {4,5} 205: {3,13} 327: {2,29}
85: {3,7} 209: {5,8} 329: {4,15}
93: {2,11} 215: {3,14} 335: {3,19}
95: {3,8} 217: {4,11} 341: {5,11}
119: {4,7} 219: {2,21} 355: {3,20}
123: {2,13} 221: {6,7} 381: {2,31}
141: {2,15} 249: {2,23} 385: {3,4,5}
143: {5,6} 253: {5,9} 391: {7,9}
145: {3,10} 255: {2,3,7} 395: {3,22}
A302568 considers singletons to be coprime.
A337694 is the pairwise non-coprime instead of pairwise coprime version.
A007359 counts partitions into singleton or pairwise coprime parts with no 1's
A101268 counts pairwise coprime or singleton compositions, ranked by
A335235.
A305713 counts pairwise coprime strict partitions.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by
A333228.
A337697 counts pairwise coprime compositions with no 1's.
A337983 counts pairwise non-coprime strict compositions, with unordered version
A318717 ranked by
A318719.
Cf.
A051424,
A056239,
A087087,
A112798,
A200976,
A220377,
A302569,
A303140,
A303282,
A328673,
A328867.
A202425
Number of partitions of n into parts having pairwise common factors but no overall common factor.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 3, 0, 0, 1, 6, 0, 5, 0, 2, 2, 9, 0, 8, 2, 4, 3, 16, 0, 22, 5, 6, 5, 19, 2, 35, 8, 14, 6, 44, 4, 55, 13, 16, 19, 64, 6, 82, 17, 39, 31, 108, 10, 105, 40, 66, 46, 161, 14, 182, 61, 97, 72, 207, 37, 287, 85, 144, 93, 357, 59
Offset: 31
a(31) = 1: [6,10,15] = [2*3,2*5,3*5].
a(37) = 2: [6,6,10,15], [10,12,15].
a(41) = 3: [6,10,10,15], [6,15,20], [6,14,21].
a(47) = 6: [6,6,10,10,15], [10,10,12,15], [6,6,15,20], [12,15,20], [6,6,14,21], [12,14,21].
a(49) = 5: [6,6,6,6,10,15], [6,6,10,12,15], [10,12,12,15], [6,10,15,18], [10,15,24].
The version with only distinct parts compared is
A328672.
The Heinz numbers of these partitions are
A328868.
The version for non-isomorphic multiset partitions is
A319759.
The version for set-systems is
A326364.
Intersecting partitions are
A200976.
-
with(numtheory):
w:= (m, h)-> mul(`if`(j>=h, 1, j), j=factorset(m)):
b:= proc(n, i, g, s) option remember; local j, ok, si;
if n<0 then 0
elif n=0 then `if`(g>1, 0, 1)
elif i<2 or member(1, s) then 0
else ok:= evalb(i<=n);
si:= map(x->w(x, i), s);
for j in s while ok do ok:= igcd(i, j)>1 od;
b(n, i-1, g, si) +`if`(ok, add(b(n-t*i, i-1, igcd(i, g),
si union {w(i,i)} ), t=1..iquo(n, i)), 0)
fi
end:
a:= n-> b(n, n, 0, {}):
seq(a(n), n=31..100);
-
w[m_, h_] := Product[If[j >= h, 1, j], {j, FactorInteger[m][[All, 1]]}]; b[n_, i_, g_, s_] := b[n, i, g, s] = Module[{j, ok, si}, Which[n<0, 0, n == 0, If[g>1, 0, 1], i<2 || MemberQ[s, 1], 0, True, ok = (i <= n); si = w[#, i]& /@ s; Do[If[ok, ok = (GCD[i, j]>1)], {j, s}]; b[n, i-1, g, si] + If[ok, Sum[b[n-t*i, i-1, GCD[i, g], si ~Union~ {w[i, i]}], {t, 1, Quotient[n, i]}], 0]]]; a[n_] := b[n, n, 0, {}]; Table[a[n], {n, 31, 100}] (* Jean-François Alcover, Feb 16 2017, translated from Maple *)
Table[Length[Select[IntegerPartitions[n],GCD@@#==1&&And@@(GCD[##]>1&)@@@Tuples[#,2]&]],{n,0,40}] (* Gus Wiseman, Nov 04 2019 *)
A328868
Heinz numbers of integer partitions with no two (not necessarily distinct) parts relatively prime, but with no divisor in common to all of the parts.
Original entry on oeis.org
17719, 40807, 43381, 50431, 74269, 83143, 101543, 105703, 116143, 121307, 123469, 139919, 140699, 142883, 171613, 181831, 185803, 191479, 203557, 205813, 211381, 213239, 215267, 219271, 230347, 246703, 249587, 249899, 279371, 286897, 289007, 296993, 300847
Offset: 1
The sequence of terms together with their prime indices begins:
17719: {6,10,15}
40807: {6,14,21}
43381: {6,15,20}
50431: {10,12,15}
74269: {6,10,45}
83143: {10,15,18}
101543: {6,21,28}
105703: {6,15,40}
116143: {12,14,21}
121307: {10,15,24}
123469: {12,15,20}
139919: {6,15,50}
140699: {6,22,33}
142883: {6,10,75}
171613: {6,14,63}
181831: {6,20,45}
185803: {10,14,35}
191479: {14,18,21}
203557: {15,18,20}
205813: {10,15,36}
211381: {10,12,45}
213239: {6,15,70}
215267: {6,10,105}
219271: {6,26,39}
230347: {6,6,10,15}
These are the Heinz numbers of the partitions counted by
A202425.
Terms of
A328679 that are not powers of 2.
The strict case is
A318716 (preceded by 2).
A ranking using binary indices (instead of prime indices) is
A326912.
Heinz numbers of relatively prime partitions are
A289509.
Cf.
A000837,
A056239,
A112798,
A200976,
A291166,
A302796,
A316476,
A318715,
A319752,
A319759,
A328336,
A328672,
A328677,
A328867.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
dv=Select[Range[100000],GCD@@primeMS[#]==1&&And[And@@(GCD[##]>1&)@@@Tuples[Union[primeMS[#]],2]]&]
A337983
Number of compositions of n into distinct parts, any two of which have a common divisor > 1.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 3, 1, 3, 3, 5, 1, 13, 1, 13, 7, 19, 1, 35, 1, 59, 15, 65, 1, 117, 5, 133, 27, 195, 1, 411, 7, 435, 67, 617, 17, 941, 7, 1177, 135, 1571, 13, 2939, 31, 3299, 375, 4757, 13, 6709, 43, 8813, 643, 11307, 61, 16427, 123, 24331, 1203, 30461, 67
Offset: 0
The a(2) = 1 through a(15) = 7 compositions (A..F = 10..15):
2 3 4 5 6 7 8 9 A B C D E F
24 26 36 28 2A 2C 3C
42 62 63 46 39 4A 5A
64 48 68 69
82 84 86 96
93 A4 A5
A2 C2 C3
246 248
264 284
426 428
462 482
624 824
642 842
A318719 is the version for Heinz numbers of partitions.
A337561 is the pairwise coprime instead of pairwise non-coprime version, or
A337562 if singletons are considered coprime.
A337605*6 counts these compositions of length 3.
A051185 and
A305843 (covering) count pairwise intersecting set-systems.
A101268 counts pairwise coprime or singleton compositions.
A318749 is the version for factorizations, with non-strict version
A319786.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
A337694 lists numbers with no two relatively prime prime indices.
-
stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&&stabQ[#,CoprimeQ]&]],{n,0,30}]
A337987
Odd numbers whose distinct prime indices are pairwise coprime, where a singleton is not considered coprime unless it is (1).
Original entry on oeis.org
15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 93, 95, 99, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 201, 205, 207, 209, 215, 217, 219, 221, 225, 245, 249, 253, 255, 265, 275, 279, 287, 291, 295, 297, 309, 323, 327, 329, 335, 341, 355, 363, 369
Offset: 1
The sequence of terms together with their prime indices begins:
15: {2,3} 135: {2,2,2,3} 215: {3,14}
33: {2,5} 141: {2,15} 217: {4,11}
35: {3,4} 143: {5,6} 219: {2,21}
45: {2,2,3} 145: {3,10} 221: {6,7}
51: {2,7} 153: {2,2,7} 225: {2,2,3,3}
55: {3,5} 155: {3,11} 245: {3,4,4}
69: {2,9} 161: {4,9} 249: {2,23}
75: {2,3,3} 165: {2,3,5} 253: {5,9}
77: {4,5} 175: {3,3,4} 255: {2,3,7}
85: {3,7} 177: {2,17} 265: {3,16}
93: {2,11} 187: {5,7} 275: {3,3,5}
95: {3,8} 201: {2,19} 279: {2,2,11}
99: {2,2,5} 205: {3,13} 287: {4,13}
119: {4,7} 207: {2,2,9} 291: {2,25}
123: {2,13} 209: {5,8} 295: {3,17}
A304711 is the not necessarily odd version, with squarefree case
A302797.
A337694 is a pairwise non-coprime instead of pairwise coprime version.
A338315 counts the partitions with these Heinz numbers.
A338316 considers singletons coprime.
A007359 counts partitions into singleton or pairwise coprime parts with no 1's, with Heinz numbers
A302568.
A304709 counts partitions whose distinct parts are pairwise coprime.
A327516 counts pairwise coprime partitions, with Heinz numbers
A302696.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by
A333228.
A337697 counts pairwise coprime compositions with no 1's.
A318717 counts pairwise non-coprime strict partitions, with Heinz numbers
A318719.
Cf.
A005408,
A051424,
A056239,
A087087,
A112798,
A200976,
A289508,
A289509,
A302569,
A303282,
A328867,
A337485.
Comments