cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A208133 Total number of subgroups of rank <= 2 of a certain class of abelian groups of order n defined as direct products of Z/(mZ) X Z/(kZ) with m|k.

Original entry on oeis.org

1, 2, 2, 8, 2, 4, 2, 12, 9, 4, 2, 16, 2, 4, 4, 31, 2, 18, 2, 16, 4, 4, 2, 24, 11, 4, 14, 16, 2, 8, 2, 42, 4, 4, 4, 72, 2, 4, 4, 24, 2, 8, 2, 16, 18, 4, 2, 62, 13, 22, 4, 16, 2, 28, 4, 24, 4, 4, 2, 32, 2, 4, 18, 90, 4, 8, 2, 16, 4, 8, 2, 108, 2, 4, 22, 16
Offset: 1

Views

Author

R. J. Mathar, Mar 29 2012

Keywords

Comments

Level function l_tau^2(n) of Bhowmik and Wu.
Records occur at 1, 2, 4, 8, 12, 16, 32, 36, 64, 72, 108, 128, 144, 288, 432, 576, 1152, 1296, 2304, 3600, 5184, 7200, 9216, 10368, 14112, 14400, 20736, 28224, 28800, 32400, 57600, ... and they are: 1, 2, 8, 12, 16, 31, 42, 72, 90, 108, 112, 116, 279, 378, 434, 810, 1044, 1302, 2025, 3069, 3780, 4158, 4644, 4872, 4914, 8910, 9450, 10530, 11484, 14322, 22275, ... - Antti Karttunen, Mar 21 2018

References

  • A. Laurincikas, The universality of Dirichlet series attached to finite Abelian groups, in "Number Theory", Proc. Turku Sympos. on Number Theory, May 31-June 4, 1999, p 179.

Crossrefs

Programs

  • Maple
    L300828 := [ 1, 0, 0, 1, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
    ] ;
    L010052 := [ 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ];
    L037213 := [ 1, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ;
    Lx := DIRICHLET(L300828,L037213) ;
    Lx := DIRICHLET(Lx,L010052) ;
    Lx := DIRICHLET(Lx,L010052) ;
    Lx := MOBIUSi(Lx) ;
    Lx := MOBIUSi(Lx) ;
    # Name of initial list L1 changed to L300828 to refer to sequence A300828 by Antti Karttunen, Mar 21 2018
  • PARI
    A037213(n) = if(issquare(n),sqrtint(n),0);
    A300828(n) = { if(1==n, return(1)); my(val=1, v=factor(n), d=matsize(v)[1]); for(i=1,d, if(v[i,2] < 2 || v[i,2] > 3, return(0)); if (v[i,2] == 3, val *= -2)); return(val); };
    a208133s1(n) = sumdiv(n,d,A037213(n/d)*A300828(d));
    a208133s2(n) = sumdiv(n,d,issquare(n/d)*a208133s1(d));
    a208133s3(n) = sumdiv(n,d,issquare(n/d)*a208133s2(d));
    a208133s4(n) = sumdiv(n,d,a208133s3(d));
    A208133(n) = sumdiv(n,d,a208133s4(d)); \\ Antti Karttunen, Mar 21 2018, after R. J. Mathar's Maple code
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X + 2*X^2)/(1 - X)^3/(1 + X)^2/(1 - p*X^2))[n], ", ")) \\ Vaclav Kotesovec, Jun 18 2020

Formula

Dirichlet g.f.: zeta(s)^2*zeta(2s)^2*zeta(2s-1)*Product_{primes p} (1 + 1/p^(2s) - 2/p^(3s)).
Sum_{k=1..n} a(k) ~ c * Pi^4 * log(n)^2 * n / 144, where c = A330594 = Product_{primes p} (1 + 1/p^2 - 2/p^3) = 1.10696011195321767665117913000743959294954883365812241904313404497877733241... - Vaclav Kotesovec, Dec 18 2019
More precise asymptotics: Let f(s) = Product_{primes p} (1 + 1/p^(2*s) - 2/p^(3*s)), then Sum_{k=1..n} a(k) ~ n*Pi^2 * (Pi^2 * f(1) * log(n)^2 + 2*Pi^2 * log(n) * (f(1) * (-1 + 8*gamma - 48*log(A) + 4*log(2*Pi)) + f'(1)) + Pi^2 * (2*f(1)*(1 + 25*gamma^2 + 576*log(A)^2 + log(A) * (48 - 96*log(2*Pi)) - 8*gamma * (1 + 36*log(A) - 3*log(2*Pi)) - 4*log(2*Pi) + 4*log(2*Pi)^2 - 6*sg1) + 2*(-1 + 8*gamma - 48*log(A) + 4*log(2*Pi))*f'(1) + f''(1)) + 48*f(1)*zeta''(2)) / 144, where f(1) = A330594, f'(1) = A330594 * (-A335705) = f(1) * Sum_{primes p} = -2*(p-3) * log(p) / (p^3 + p - 2) = -0.087825458097278818094375273108270679512035928574..., f''(1) = A330594 * (A335705^2 + A335706) = f'(1)^2/f(1) + f(1) * Sum_{primes p} = 2*p*(2*p^3 - 9*p^2 - 1) * log(p)^2) / (p^3 + p - 2)^2 = 0.26722508718782634450711076996710402451611235402675360769..., zeta''(2) = A201994, A is the Glaisher-Kinkelin constant A074962, gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Jun 18 2020

A092089 Number of odd-length palindromes among the k-tuples of partial quotients of the continued fraction expansions of n/r, r = 1, ..., n.

Original entry on oeis.org

1, 2, 3, 4, 3, 6, 3, 8, 5, 6, 3, 12, 3, 6, 9, 12, 3, 10, 3, 12, 9, 6, 3, 24, 5, 6, 7, 12, 3, 18, 3, 16, 9, 6, 9, 20, 3, 6, 9, 24, 3, 18, 3, 12, 15, 6, 3, 36, 5, 10, 9, 12, 3, 14, 9, 24, 9, 6, 3, 36, 3, 6, 15, 20, 9, 18, 3, 12, 9, 18, 3, 40, 3, 6, 15, 12, 9, 18, 3, 36, 9, 6, 3, 36, 9, 6, 9, 24, 3
Offset: 1

Views

Author

John W. Layman, Mar 29 2004

Keywords

Comments

Suggested by R. K. Guy, Mar 26 2004
From Jianing Song, Mar 24 2019: (Start)
a(n) is also the number of inequivalent residue classes modulo n where the equivalence relation is defined as [a] ~ [b] (mod n) if and only if there exists some k such that gcd(k, n) = 1 and that a*k^2 == b (mod n). For example, for n = 16, the inequivalent residue classes are {[0], [1], [2], [3], [4], [5], [6], [7], [8], [10], [12], [14]}, so a(16) = 14.
Proof: let S(n) be the set of inequivalent residue classes modulo n, so our goal is to show that |S(n)| = a(n) for all n. By the Chinese Remainder Theorem, if gcd(s, t) = 1, then [a] ~ [b] (mod s*t) if and only if [a] ~ [b] (mod s) and [a] ~ [b] (mod t), so there is a one-to-one correspondence between S(s*t) and S(s) X S(t), that is, |S(n)| is multiplicative. It is obvious that |S(p^e)| = a(p^e), so |S(n)| = a(n) for all n. (End)

Examples

			[1, 2, 1, 2, 1] <-> 1+1/(2+1/(1+1/(2+1/1))) = 15/11 is one of the nine palindromes {[15], [5], [3, 1, 3], [3], [1, 1, 1], [1, 2, 1, 2, 1], [1, 3, 1], [1, 13, 1], [1]} among the continued fraction expansions of 15/r for r = 1..15. Thus a(15)=9.
		

Crossrefs

Programs

  • Mathematica
    Table[Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 0 :> Which[p == 1, 1, OddQ@ p, 2 e + 1, And[p == 2, e == 1], 2, True, 4 (e - 1)]], {n, 89}] (* Michael De Vlieger, Sep 11 2017 *)
  • PARI
    a(n) = if (n % 2, numdiv(n^2), if (n/2 % 2, 2*numdiv((n/2)^2), val = valuation(n, 2); 4*(val-1)*numdiv((n/2^val)^2))); \\ Michel Marcus, Jun 26 2014
    
  • Scheme
    (define (A092089 n) (cond ((= 1 n) n) ((zero? (modulo n 4)) (* 4 (+ -1 (A067029 n)) (A092089 (A000265 n)))) ((even? n) (* 2 (A092089 (/ n 2)))) (else (* (+ 1 (* 2 (A067029 n))) (A092089 (A028234 n)))))) ;; Antti Karttunen, Sep 11 2017

Formula

Conjecture: Let n = (2^k0)*(p1^k1)*(p2^k2)*...*(pm^km) be the prime factorization of n where p1, p2, ..., pm are distinct primes. Then a(n) is multiplicative and is given by a(n) = f(k0)*g(k1)*g(k2)*...*g(km), where f(0) = 1, f(1) = 2, f(k) = 4(k-1) if k>1 and g(k) = 2k+1 (This has been verified for n = 1-10000.) [Corrected by Jianing Song, Mar 24 2019]
Multiplicative with a(p^e) = 2e+1 if p is odd; a(2) = 2, a(2^e)= 4*(e-1), if e > 1. - Michel Marcus, Jun 26 2014
Dirichlet g.f.: zeta(s)^3/zeta(2*s) * (1 - 1/2^s + 1/2^(2*s-1)). - Jianing Song, Mar 25 2019 [corrected by Amiram Eldar, Dec 18 2023]
Sum_{k=1..n} a(k) ~ (3/Pi^2) * n * (log(n^2) + c_1 * log(n) + c_2), where c_1 = 6 * gamma - 2 - log(2) - 4*zeta'(2)/zeta(2) = 3.04999078122..., gamma is Euler's constant (A001620), c_2 = 2 - 6 * gamma + 6 * gamma^2 + log(2) - 3 * gamma * log(2) + 3*log(2)^2/2 - 6 *gamma_1 + 4*zeta'(2)/zeta(2) + (2 * log(2) - 12 * gamma) * zeta'(2)/zeta(2) + 8 * (zeta'(2)/zeta(2))^2 - 4 * zeta''(2)/zeta(2) = -0.1743888255..., and gamma_1 is the 1st Stieltjes constant (A082633). - Amiram Eldar, Dec 18 2023

A102887 Decimal expansion of Integral_{x=0..1} log(gamma(x))^2 dx.

Original entry on oeis.org

1, 8, 6, 6, 3, 1, 7, 0, 8, 3, 7, 9, 3, 5, 6, 2, 0, 8, 0, 9, 9, 2, 9, 6, 7, 9, 3, 7, 9, 7, 8, 2, 8, 9, 7, 3, 9, 8, 0, 0, 4, 0, 4, 1, 8, 6, 7, 9, 5, 3, 3, 8, 8, 0, 9, 4, 0, 5, 5, 1, 4, 4, 9, 5, 9, 3, 0, 4, 0, 9, 6, 5, 9, 8, 4, 9, 0, 5, 6, 3, 0, 3, 4, 7, 5, 5, 2, 3, 9, 8, 6, 0, 2, 9, 2, 5, 7, 2, 5, 0, 8, 5
Offset: 1

Views

Author

Eric W. Weisstein, Jan 15 2005

Keywords

Comments

Also equals (1/6)*log(2*Pi)^2 + 2*log(A)*log(2*Pi) - (1/6)*gamma*log(2*Pi) + Pi^2/48 + 2*gamma*log(A) + zeta''(2)/(2*Pi^2) (with A the Glaisher-Kinkelin constant). - Jean-François Alcover, Apr 29 2013

Examples

			1.8663170837935620809929679379782897398...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 236.

Crossrefs

Programs

  • Mathematica
    EulerGamma^2/12 + Pi^2/48 + (EulerGamma*Log[2*Pi])/6 + Log[2*Pi]^2/3 - ((EulerGamma + Log[2*Pi])*Zeta'[2])/Pi^2 + Zeta''[2]/(2*Pi^2)
  • PARI
    intnum(x=0,1, log(gamma(x))^2) \\ Michel Marcus, Aug 27 2015

Formula

Equals gamma^2/12 + Pi^2/48 + (gamma*log(2*Pi))/6 + log(2*Pi)^2/3 - ((gamma + log(2*Pi))*zeta'(2))/Pi^2 + zeta''(2)/(2*Pi^2).
Equals -Integral_{x=0..1, y=0..1} log(gamma(x*y))^2/log(x*y) dx dy. (Apply Theorem 1 or Theorem 2 in Glasser (2019).) - Petros Hadjicostas, Jun 30 2020

A174466 a(n) = Sum_{d|n} d*sigma(n/d)*tau(d).

Original entry on oeis.org

1, 7, 10, 31, 16, 70, 22, 111, 64, 112, 34, 310, 40, 154, 160, 351, 52, 448, 58, 496, 220, 238, 70, 1110, 166, 280, 334, 682, 88, 1120, 94, 1023, 340, 364, 352, 1984, 112, 406, 400, 1776, 124, 1540, 130, 1054, 1024, 490, 142, 3510, 316, 1162, 520, 1240
Offset: 1

Views

Author

Paul D. Hanna, Apr 04 2010

Keywords

Comments

Compare to sigma_2(n) = Sum_{d|n} d*sigma(n/d)*phi(d) = sum of squares of divisors of n.
tau(n) = A000005(n) = the number of divisors of n,
and sigma(n) = A000203(n) = sum of divisors of n.
Dirichlet convolution of A038040 and A000203. - R. J. Mathar, Feb 06 2011

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A007425 (tau_3), A034718, A038040, A174465.

Programs

  • Haskell
    a174466 n = sum $ zipWith3 (((*) .) . (*))
                      divs (map a000203 $ reverse divs) (map a000005 divs)
                      where divs = a027750_row n
    -- Reinhard Zumkeller, Jan 21 2014
    
  • Magma
    [&+[d*DivisorSigma(1, n div d)*#Divisors(d):d in Divisors(n)]:n in [1..55]]; // Marius A. Burtea, Oct 18 2019
  • Mathematica
    f[p_, e_] := ((e^2+3*e+2)*p^(e+3) - 2*(e^2+4*e+3)*p^(e+2) + (e^2+5*e+6)*p^(e+1) - 2)/(2*(p-1)^3); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 26 2025 *)
  • PARI
    {a(n)=sumdiv(n,d,d*sigma(n/d)*sigma(d,0))}
    

Formula

Logarithmic derivative of A174465.
Dirichlet g.f.: zeta(s)*(zeta(s-1))^3. - R. J. Mathar, Feb 06 2011
a(n) = Sum_{d|n} tau_3(d)*d = Sum_{d|n} A007425(d)*d. - Enrique Pérez Herrero, Jan 17 2013
G.f.: Sum_{k>=1} k*tau_3(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 06 2018
Sum_{k=1..n} a(k) ~ Pi^2*n^2/24 * (log(n)^2 + ((6*g - 1) + 12*z1/Pi^2) * log(n) + (1 - 6*g + 12*g^2 - 12*sg1)/2 + 6*((6*g - 1)*z1 + z2)/Pi^2), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant A082633, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994. - Vaclav Kotesovec, Feb 02 2019
Multiplicative with a(p^e) = ((e^2+3*e+2)*p^(e+3) - 2*(e^2+4*e+3)*p^(e+2) + (e^2+5*e+6)*p^(e+1) - 2)/(2*(p-1)^3). - Amiram Eldar, May 26 2025

A257549 Decimal expansion of zeta''(0) (negated).

Original entry on oeis.org

2, 0, 0, 6, 3, 5, 6, 4, 5, 5, 9, 0, 8, 5, 8, 4, 8, 5, 1, 2, 1, 0, 1, 0, 0, 0, 2, 6, 7, 2, 9, 9, 6, 0, 4, 3, 8, 1, 9, 8, 9, 9, 4, 9, 1, 0, 1, 6, 0, 9, 1, 9, 8, 8, 1, 1, 6, 9, 8, 6, 8, 2, 8, 0, 8, 5, 7, 7, 6, 0, 0, 7, 8, 3, 9, 8, 0, 8, 5, 3, 4, 2, 7, 6, 4, 8, 7, 0, 5, 6, 0, 3, 2, 8, 0, 8, 3, 9, 2, 4, 7, 2, 6, 6
Offset: 1

Views

Author

Jean-François Alcover, Apr 29 2015

Keywords

Comments

Essentially the same as A245273. - R. J. Mathar, Apr 30 2015

Examples

			2.00635645590858485121010002672996043819899491016091988116986828...
		

Crossrefs

Programs

  • Maple
    evalf(-Zeta(2, 0), 120); # Vaclav Kotesovec, Apr 29 2015
  • Mathematica
    RealDigits[ StieltjesGamma[1] + EulerGamma^2/2 - Pi^2/24 - (1/2)*(Log[2] + Log[Pi])^2, 10, 104] // First
  • PARI
    -zeta''(0) \\ Charles R Greathouse IV, Mar 10 2016

Formula

zeta''(0) = gamma_1 + gamma^2/2 - Pi^2/24 - (1/2)*(log(2)+log(Pi))^2, where gamma_1 is the first Stieltjes constant.

A319090 Decimal expansion of C, the coefficient of n*log(n) in the asymptotic formula of Ramanujan for Sum_{k=1..n} (d(k)^2), where d(k) is the number of distinct divisors of k.

Original entry on oeis.org

8, 2, 3, 2, 6, 5, 2, 0, 8, 2, 6, 9, 4, 8, 5, 0, 2, 0, 1, 5, 6, 8, 1, 6, 4, 5, 3, 9, 4, 7, 0, 9, 0, 4, 0, 6, 3, 0, 1, 2, 7, 3, 2, 7, 0, 3, 2, 1, 1, 4, 2, 2, 5, 0, 8, 9, 2, 5, 2, 4, 5, 7, 9, 2, 0, 8, 5, 3, 0, 3, 9, 5, 9, 7, 1, 7, 5, 5, 0, 4, 2, 1, 8, 1, 7, 0, 8, 2, 1, 3, 3, 7, 2, 4, 6, 9, 7, 7, 1, 2, 8, 2, 3, 0, 2, 3
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 10 2018

Keywords

Examples

			0.823265208269485020156816453947090406301273270321142250892524579208530395971755...
		

Crossrefs

Programs

  • Mathematica
    36*EulerGamma^2/Pi^2 - (288*Zeta'[2]/Pi^4 + 24/Pi^2)*EulerGamma + (864*Zeta'[2]^2/Pi^6 + 72*Zeta'[2]/Pi^4 - 72/Pi^4*Zeta''[2] + 6/Pi^2) - 24*StieltjesGamma[1]/Pi^2

Formula

C = 36*gamma^2/Pi^2 - (288*z1/Pi^4 + 24/Pi^2)*gamma + (864*z1^2/Pi^6 + 72*z1/Pi^4 - 72/Pi^4*z2 + 6/Pi^2) - 24*g1/Pi^2, where gamma is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994 and g1 is the first Stieltjes constant, see A082633.

A319091 Decimal expansion of D, the coefficient of n in the asymptotic formula of Ramanujan for Sum_{k=1..n} (d(k)^2), where d(k) is the number of distinct divisors of k.

Original entry on oeis.org

4, 6, 0, 3, 2, 3, 3, 7, 2, 2, 5, 8, 7, 2, 1, 4, 3, 0, 3, 9, 3, 7, 6, 2, 0, 8, 6, 3, 8, 4, 4, 1, 8, 9, 7, 4, 7, 6, 3, 2, 1, 4, 9, 0, 3, 5, 3, 8, 7, 3, 9, 2, 2, 4, 0, 5, 8, 4, 2, 5, 0, 3, 4, 8, 4, 4, 5, 9, 0, 2, 6, 2, 9, 3, 2, 4, 0, 3, 2, 0, 7, 3, 8, 0, 1, 9, 8, 4, 8, 1, 0, 7, 6, 5, 9, 8, 5, 9, 9, 7, 3, 5, 6, 9, 5, 8
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 10 2018

Keywords

Examples

			0.4603233722587214303937620863844189747632149035387392240584250348445902629324...
		

Crossrefs

Programs

  • Mathematica
    24*EulerGamma^3/Pi^2 - (432*Zeta'[2] /Pi^4+ 36/Pi^2)*EulerGamma^2 + (3456*Zeta'[2]^2/Pi^6 + 288*(Zeta'[2]-Zeta''[2])/Pi^4 + 24/Pi^2 - 72*StieltjesGamma[1]/Pi^2)*EulerGamma + StieltjesGamma[1]*(288*Zeta'[2]/Pi^4 + 24/Pi^2)-10368*Zeta'[2]^3/Pi^8 - 864*Zeta'[2]^2/Pi^6 + 1728*Zeta''[2] * Zeta'[2]/Pi^6 + 72*(Zeta''[2]-Zeta'[2])/Pi^4 - 48*Zeta'''[2]/Pi^4 + (12*StieltjesGamma[2] - 6)/Pi^2

Formula

D = 24*gamma^3/Pi^2 - (432*z1 /Pi^4+ 36/Pi^2)*gamma^2 + (3456*z1^2/Pi^6 + 288*(z1-z2)/Pi^4 + 24/Pi^2 - 72*g1/Pi^2)*gamma + g1*(288*z1/Pi^4 + 24/Pi^2)-10368*z1^3/Pi^8 - 864*z1^2/Pi^6 + 1728*z2*z1/Pi^6 + 72*(z2-z1)/Pi^4- 48*z3/Pi^4 + (12*g2-6)/Pi^2, where gamma is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and g1, g2 are the Stieltjes constants, see A082633 and A086279.

A320896 a(n) = Sum_{k=1..n} k * tau(k)^2, where tau is A000005.

Original entry on oeis.org

1, 9, 21, 57, 77, 173, 201, 329, 410, 570, 614, 1046, 1098, 1322, 1562, 1962, 2030, 2678, 2754, 3474, 3810, 4162, 4254, 5790, 6015, 6431, 6863, 7871, 7987, 9907, 10031, 11183, 11711, 12255, 12815, 15731, 15879, 16487, 17111, 19671, 19835, 22523, 22695, 24279
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k*DivisorSigma[0, k]^2, {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k*numdiv(k)^2); \\ Michel Marcus, Oct 23 2018

Formula

a(n) ~ n^2 * (3*(Pi^6*(-1 - 24*g^2 + 32*g^3 + g*(8 - 96*s1) + 16*s1 + 16*s2) - 13824*z1^3 + 576*Pi^2*z1*((-1 + 8*g)*z1 + 4*z2) - 8*Pi^4*(3*(1 - 8*g + 24*g^2 - 16*s1)*z1 - 6*z2 + 48*g*z2 + 8*z3)) + 6*(Pi^6*(1 - 8*g + 24*g^2 - 16*s1) + 576*Pi^2*z1^2 - 24*Pi^4*(-z1 + 8*g*z1 + 2*z2))*log(n) + 6*((-1 + 8*g)*Pi^6 - 24*Pi^4*z1)*log(n)^2 + 4*Pi^6*log(n)^3) / (8*Pi^8), where g is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and s1, s2 are the Stieltjes constants, see A082633 and A086279.

A320897 a(n) = Sum_{k=1..n} k^2 * tau(k)^2, where tau is A000005.

Original entry on oeis.org

1, 17, 53, 197, 297, 873, 1069, 2093, 2822, 4422, 4906, 10090, 10766, 13902, 17502, 23902, 25058, 36722, 38166, 52566, 59622, 67366, 69482, 106346, 111971, 122787, 134451, 162675, 166039, 223639, 227483, 264347, 281771, 300267, 319867, 424843, 430319, 453423
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 23 2018

Keywords

Comments

In general, for m>=0, Sum_{k=1..n} k^m * tau(k)^2 ~ n^(m+1) * (log(n))^3 / ((m+1) * Pi^2).

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k^2*DivisorSigma[0, k]^2, {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k^2*numdiv(k)^2); \\ Michel Marcus, Oct 23 2018

Formula

a(n) ~ n^3 * (2*Pi^6*(-1 + 12*g - 54*g^2 + 108*g^3 + 36*s1 - 324*g*s1 + 54*s2) - 93312*z1^3 + 2592*Pi^2*z1*(-z1 + 12*g*z1 + 6*z2) - 72*Pi^4*(z1 - 12*g*z1 + 54*g^2*z1 - 36*s1*z1 - 3*z2 + 36*g*z2 + 6*z3) + 6*(Pi^6*(1 - 12*g + 54*g^2 - 36*s1) + 1296*Pi^2*z1^2 - 36*Pi^4*(-z1 + 12*g*z1 + 3*z2))*log(n) + 9*((-1 + 12*g)*Pi^6 - 36*Pi^4*z1)*log(n)^2 + 9*Pi^6*log(n)^3) / (27*Pi^8), where g is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and s1, s2 are the Stieltjes constants, see A082633 and A086279.

A340442 Decimal expansion of zeta''(3), the second derivative of the Riemann zeta function at 3.

Original entry on oeis.org

2, 3, 9, 7, 4, 6, 9, 1, 7, 3, 0, 5, 3, 8, 7, 1, 8, 4, 2, 4, 4, 1, 7, 6, 5, 4, 9, 8, 3, 8, 8, 8, 1, 2, 9, 9, 5, 5, 0, 9, 2, 7, 2, 9, 5, 5, 4, 2, 9, 1, 1, 6, 9, 7, 8, 1, 2, 9, 9, 9, 0, 4, 1, 5, 4, 9, 1, 8, 4, 0, 9, 4, 3, 5, 6, 8, 5, 0, 4, 8, 1, 1, 5, 1, 7, 7, 1, 7, 7, 9, 3, 4, 0, 2, 6, 0, 3, 7, 9, 5, 7, 8, 8, 0, 9
Offset: 0

Views

Author

R. J. Mathar, Jan 07 2021

Keywords

Examples

			0.239746917305387184244176549838881...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(2,3.0),100) ;
  • Mathematica
    RealDigits[Zeta''[3], 10, 100][[1]] (* Amiram Eldar, May 28 2021 *)
  • PARI
    zeta''(3) \\ Michel Marcus, Jan 07 2021

Formula

Equals Sum_{k>=1} log(k)^2/k^3. - Amiram Eldar, May 28 2021
Previous Showing 11-20 of 26 results. Next