cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A192066 Sum of the odd unitary divisors of n.

Original entry on oeis.org

1, 1, 4, 1, 6, 4, 8, 1, 10, 6, 12, 4, 14, 8, 24, 1, 18, 10, 20, 6, 32, 12, 24, 4, 26, 14, 28, 8, 30, 24, 32, 1, 48, 18, 48, 10, 38, 20, 56, 6, 42, 32, 44, 12, 60, 24, 48, 4, 50, 26, 72, 14, 54, 28, 72, 8, 80, 30, 60, 24, 62, 32, 80, 1, 84, 48, 68, 18, 96, 48, 72, 10, 74, 38, 104, 20, 96, 56, 80, 6
Offset: 1

Views

Author

R. J. Mathar, Jun 22 2011

Keywords

Comments

The unitary analog of A000593.

Examples

			n=9 has the divisors 1, 3 and 9, of which 3 is not a unitary divisor because gcd(3,9/3) = gcd(3,3) != 1. This leaves 1 and 9 as unitary divisors which sum to a(9) = 1+9 = 10.
		

Crossrefs

Programs

  • Haskell
    a192066 = sum . filter odd . a077610_row
    -- Reinhard Zumkeller, Feb 12 2012
    
  • Maple
    unitaryOddSigma := proc(n,k) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if type(d,'odd') then if igcd(d,n/d) = 1 then a := a+d^k ; end if; end if; end do: a ; end proc:
    A := proc(n) unitaryOddSigma(n,1) ;end proc:
  • Mathematica
    a[n_] := DivisorSum[n, Boole[OddQ[#] && GCD[#, n/#] == 1]*#&];
    Array[a, 80] (* Jean-François Alcover, Nov 16 2017 *)
    f[2, p_] := 1; f[p_, e_] := p^e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    a(n) = sumdiv(n, d, if ((gcd(d, n/d)==1) && (d%2), d)); \\ Michel Marcus, Nov 17 2017

Formula

a(n) = Sum_{d|n, d odd, gcd(d,n/d)=1} d.
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-2^(1-s))/( zeta(2s-1)*(1-2^(1-2s)) ).
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (21*zeta(3)). - Vaclav Kotesovec, Feb 02 2019
Multiplicative with a(2^e) = 1, and a(p^e) = p^e + 1 for p > 2. - Amiram Eldar, Sep 18 2020

A327278 a(n) = Sum_{d|n, d odd} d * mu(d) * mu(n/d).

Original entry on oeis.org

1, -1, -4, 0, -6, 4, -8, 0, 3, 6, -12, 0, -14, 8, 24, 0, -18, -3, -20, 0, 32, 12, -24, 0, 5, 14, 0, 0, -30, -24, -32, 0, 48, 18, 48, 0, -38, 20, 56, 0, -42, -32, -44, 0, -18, 24, -48, 0, 7, -5, 72, 0, -54, 0, 72, 0, 80, 30, -60, 0, -62, 32, -24, 0, 84, -48, -68, 0, 96
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 15 2019

Keywords

Comments

Dirichlet inverse of A000593.

Crossrefs

Programs

  • Magma
    [&+[d*MoebiusMu(d)*MoebiusMu(n div d): d in [a:a in Divisors(n)| IsOdd(a)]]:n in [1..70]]; // Marius A. Burtea, Sep 15 2019
  • Mathematica
    Table[DivisorSum[n, # MoebiusMu[#] MoebiusMu[n/#] &, OddQ[#] &], {n, 1, 69}]
    a[n_] := If[n == 1, n, -Sum[If[d < n, DivisorSum[n/d, Mod[#, 2] # &] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 69}]
    f[p_, e_] := If[p == 2, -Boole[e == 1], Which[e == 1, -p - 1, e == 2, p, e > 2, 0]]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)

Formula

G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} A000593(k) * A(x^k).
Dirichlet g.f.: 1 / (zeta(s) * zeta(s-1) * (1 - 2^(1-s))).
a(1) = 1; a(n) = -Sum_{d|n, dA000593(n/d) * a(d).
a(n) = Sum_{d|n} A067856(n/d) * A055615(d).
Multiplicative with a(2^e) = -1 if e = 1 and 0 otherwise, and a(p^e) = -(p+1) if e = 1, p if e = 2 and 0 otherwise, for an odd prime p. - Amiram Eldar, Oct 25 2020
Sum_{k=1..n} abs(a(k)) ~ 30*n^2/Pi^4. - Vaclav Kotesovec, May 30 2024

A319697 Sum of even squarefree divisors of n.

Original entry on oeis.org

0, 2, 0, 2, 0, 8, 0, 2, 0, 12, 0, 8, 0, 16, 0, 2, 0, 8, 0, 12, 0, 24, 0, 8, 0, 28, 0, 16, 0, 48, 0, 2, 0, 36, 0, 8, 0, 40, 0, 12, 0, 64, 0, 24, 0, 48, 0, 8, 0, 12, 0, 28, 0, 8, 0, 16, 0, 60, 0, 48, 0, 64, 0, 2, 0, 96, 0, 36, 0, 96, 0, 8, 0, 76, 0, 40, 0, 112, 0, 12, 0, 84, 0, 64, 0, 88, 0, 24, 0, 48, 0, 48, 0, 96
Offset: 1

Views

Author

Antti Karttunen, Oct 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Divisors[n],EvenQ[#]&&SquareFreeQ[#]&]],{n,100}] (* Harvey P. Dale, May 18 2019 *)
    f[2, e_] := 2; f[p_, e_] := p + 1; a[n_] := If[OddQ[n], 0, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Jun 30 2022 *)
  • PARI
    A319697(n) = sumdiv(n, d, (!(d%2))*issquarefree(d)*d);

Formula

a(n) = Sum_{d|n} A059841(d)*A008966(d)*d.
a(n) = A048250(n) - A206787(n).

A086761 Numbers k such that k-th cyclotomic polynomial has exactly 5 nonzero terms.

Original entry on oeis.org

5, 10, 20, 25, 40, 50, 80, 100, 125, 160, 200, 250, 320, 400, 500, 625, 640, 800, 1000, 1250, 1280, 1600, 2000, 2500, 2560, 3125, 3200, 4000, 5000, 5120, 6250, 6400, 8000, 10000, 10240, 12500, 12800, 15625, 16000, 20000, 20480, 25000, 25600, 31250, 32000
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 02 2003

Keywords

Comments

A206787(a(n)) = 6. - Reinhard Zumkeller, Feb 12 2012
All terms have the form 2^a 5^b with a >= 0 and b > 0. - T. D. Noe, Feb 13 2012
If the above holds for all terms then this sequence is 5 * A003592. - David A. Corneth, Jul 04 2018

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], Count[CoefficientList[Cyclotomic[#, x], x], 0] == EulerPhi[#] - 4 &] (* T. D. Noe, Feb 13 2012 *)
  • PARI
    is(n) = v = Vec(polcyclo(n)); sum(i=1,#v,v[i]!=0) == 5 \\ David A. Corneth, Jul 04 2018

Extensions

More terms from T. D. Noe, Feb 13 2012

A366887 Sum of the odd squarefree divisors permuted by A163511.

Original entry on oeis.org

1, 1, 1, 4, 1, 4, 4, 6, 1, 4, 4, 6, 4, 24, 6, 8, 1, 4, 4, 6, 4, 24, 6, 8, 4, 24, 24, 48, 6, 32, 8, 12, 1, 4, 4, 6, 4, 24, 6, 8, 4, 24, 24, 48, 6, 32, 8, 12, 4, 24, 24, 48, 24, 192, 48, 96, 6, 32, 32, 72, 8, 48, 12, 14, 1, 4, 4, 6, 4, 24, 6, 8, 4, 24, 24, 48, 6, 32, 8, 12, 4, 24, 24, 48, 24, 192, 48, 96, 6, 32, 32, 72, 8
Offset: 0

Views

Author

Antti Karttunen, Nov 04 2023

Keywords

Crossrefs

Cf. A163511, A206787, A366888 (rgs-transform).

Programs

  • PARI
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A206787(n) = sumdiv(n, d, d*issquarefree(2*d));
    A366887(n) = A206787(A163511(n));

Formula

a(n) = A206787(A163511(n)).

A366888 Lexicographically earliest infinite sequence such that a(i) = a(j) => A366887(i) = A366887(j) for all i, j >= 0.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 4, 3, 5, 1, 2, 2, 3, 2, 4, 3, 5, 2, 4, 4, 6, 3, 7, 5, 8, 1, 2, 2, 3, 2, 4, 3, 5, 2, 4, 4, 6, 3, 7, 5, 8, 2, 4, 4, 6, 4, 9, 6, 10, 3, 7, 7, 11, 5, 6, 8, 12, 1, 2, 2, 3, 2, 4, 3, 5, 2, 4, 4, 6, 3, 7, 5, 8, 2, 4, 4, 6, 4, 9, 6, 10, 3, 7, 7, 11, 5, 6, 8, 12, 2, 4, 4, 6, 4, 9, 6, 10, 4, 9
Offset: 0

Views

Author

Antti Karttunen, Nov 04 2023

Keywords

Comments

Restricted growth sequence transform of A366887.

Crossrefs

Cf. also A366881.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A206787(n) = sumdiv(n, d, d*issquarefree(2*d));
    A366887(n) = A206787(A163511(n));
    v366888 = rgs_transform(vector(1+up_to,n,A366887(n-1)));
    A366888(n) = v366888[1+n];

A284233 Sum of odd prime power divisors of n (not including 1).

Original entry on oeis.org

0, 0, 3, 0, 5, 3, 7, 0, 12, 5, 11, 3, 13, 7, 8, 0, 17, 12, 19, 5, 10, 11, 23, 3, 30, 13, 39, 7, 29, 8, 31, 0, 14, 17, 12, 12, 37, 19, 16, 5, 41, 10, 43, 11, 17, 23, 47, 3, 56, 30, 20, 13, 53, 39, 16, 7, 22, 29, 59, 8, 61, 31, 19, 0, 18, 14, 67, 17, 26, 12, 71, 12, 73, 37, 33, 19, 18, 16, 79, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 23 2017

Keywords

Examples

			a(15) = 8 because 15 has 4 divisors {1, 3, 5, 15} among which 2 are odd prime powers {3, 5} therefore 3 + 5 = 8.
		

Crossrefs

Cf. A000961, A005069, A023888, A023889, A038712, A061345, A065091 (fixed points), A087436 (number of odd prime power divisors of n), A206787, A246655, A284117.

Programs

  • Mathematica
    nmax = 80; Rest[CoefficientList[Series[Sum[Boole[PrimePowerQ[k] && Mod[k, 2] == 1] k x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Total[Select[Divisors[n], PrimePowerQ[#] && Mod[#, 2] == 1 &]], {n, 80}]
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; f[2, e_] := 0; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)

Formula

G.f.: Sum_{k>=1} A061345(k)*x^A061345(k)/(1 - x^A061345(k)).
a(n) = Sum_{d|n, d = p^k, p prime, p > 2, k > 0} d.
a(p^k) = p*(p^k - 1)/(p - 1) for p is a prime > 2.
a(2^k*p) = p for p is a prime > 2.
a(2^k) = 0.
Additive with a(2^e) = 0, and a(p^e) = (p^(e+1)-1)/(p-1) - 1 for an odd prime p. - Amiram Eldar, Jul 24 2024
Previous Showing 11-17 of 17 results.