cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 61 results. Next

A129506 Number of partitions of a {2n-1}-set into n nonempty subsets.

Original entry on oeis.org

1, 3, 25, 350, 6951, 179487, 5715424, 216627840, 9528822303, 477297033785, 26826851689001, 1672162773483930, 114485073343744260, 8541149231801585700, 689692892575539953400, 59932861644880019603520, 5576731051262006158950735, 553234633385550257808059085
Offset: 1

Views

Author

Paul D. Hanna, Apr 18 2007

Keywords

Comments

B^{-1}(x) = Sum_{n>0} a(n)/(2*n-1)!*(n-1)! x^n is inverse function for x*B(x), where B(x) is g.f. for Bernoulli number (see A027641). - Vladimir Kruchinin, Jan 19 2012

Examples

			G.f.: A(x) = x + 3*x^2 + 25*x^3 + 350*x^4 + 6951*x^5 + 179487*x^6 + ... where A(x) = 1^1*x*exp(-1^2*x) + 2^3*exp(-2^2*x)*x^2/2! + 3^5*exp(-3^2*x)*x^3/3! + 4^7*exp(-4^2*x)*x^4/4! + 5^9*exp(-5^2*x)*x^5/5! + ... forms a power series in x with integer coefficients. - _Paul D. Hanna_, Oct 15 2012
		

Crossrefs

Programs

  • Maple
    a:= n-> Stirling2(2*n-1, n):
    seq(a(n), n=1..25);  # Alois P. Heinz, Dec 15 2013
  • Mathematica
    a[n_] := Sum[ Binomial[2*n - 2, j]*StirlingS2[2*n - j - 2, n-1], {j, 0, n-1}]; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, Jun 14 2013, after Vladimir Kruchinin *)
    Table[StirlingS2[2*n-1,n], {n, 1, 20}] (* Vaclav Kotesovec, Dec 15 2013 *)
  • Maxima
    a(n):=((2*n-1)*((sum((stirling2(2*i-1, i)*binomial(2*n-2, 2*i-1)*stirling2(2*(n-i)-1, n-i-1))/((n-i-1)*binomial(n-1, i)), i, 1, n-2))+(n-1)* stirling2(2*n-3, n-1)+stirling2(2*n-2, n-1)))/(n);
      makelist(a(n),n,1,10); /* Vladimir Kruchinin, Feb 28 2013 */
  • PARI
    a(n)=polcoeff(1/prod(k=1,n,1-k*x +x*O(x^n)),n-1)
    
  • PARI
    vector(66, n, abs( stirling(2*n-1, n, 2) ) ) /* Joerg Arndt, Jun 09 2012 */
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, (-1)^(n-k)*binomial(n,k)*k^(2*n-1))} \\ Paul D. Hanna, Oct 15 2012
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,m^(2*m-1)*x^m*exp(-m^2*x+x*O(x^n))/m!),n)}
    for(n=1,20,print1(a(n),", "))
    

Formula

Central Stirling numbers of the second kind: a(n) = A008277(2n-1,n) for n >= 1.
G.f.: Sum_{n>=1} n^(2*n-1) * exp(-n^2*x) * x^n / n!, an integer series. - Paul D. Hanna, Oct 15 2012
a(n) = 1/n! * Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * k^(2*n-1). - Paul D. Hanna, Oct 15 2012
a(n) = ((2*n-1)*((sum(i=1..n-2, (stirling2(2*i-1,i)*C(2*n-2,2*i-1)*stirling2(2*(n-i)-1,n-i-1))/((n-i-1)*C(n-1,i))))+(n-1)*stirling2(2*n-3,n-1) +stirling2(2*n-2,n-1)))/n. - Vladimir Kruchinin, Feb 28 2013
a(n-1) = sum(j=0..n, binomial(2*n,j)*stirling2(2*n-j,n)). - Vladimir Kruchinin, Jun 14 2013
a(n) ~ 2^(2*n-3/2) * n^(n-3/2) * (2-c)^(1-n) / (sqrt(Pi*(1-c)) * exp(n) * c^n), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... = 2*A106533. - Vaclav Kotesovec, Dec 15 2013
a(n) = A258170(2*n-1,n). - Alois P. Heinz, Mar 16 2018

A217901 O.g.f.: Sum_{n>=0} 2*n^n * (n+2)^(n-1) * exp(-n*(n+2)*x) * x^n / n!.

Original entry on oeis.org

1, 2, 10, 106, 1736, 38414, 1073178, 36281032, 1441336688, 65849949118, 3403003693310, 196336487214234, 12513043615743360, 873250527590532680, 66241197525447027832, 5427563864923583687376, 477771405475710621697632, 44970647131664087237328798, 4507506792104658670610331462
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} 2*(n+2)^(n-1) * exp(-(n+2)*x) * x^n/n!.

Examples

			O.g.f.: A(x) = 1 + 2*x + 10*x^2 + 106*x^3 + 1736*x^4 + 38414*x^5 + 1073178*x^6 +...
where
A(x) = 1 + 2*1^1*3^0*x*exp(-1*3*x) + 2*2^2*4^1*exp(-2*4*x)*x^2/2! + 2*3^3*5^2*exp(-3*5*x)*x^3/3! + 2*4^4*6^3*exp(-4*6*x)*x^4/4! + 2*5^5*7^4*exp(-5*7*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n-1,j]*2^(n-j)*StirlingS2[n+j,n],{j,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, May 22 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,2*m^m*(m+2)^(m-1)*x^m*exp(-m*(m+2)*x+x*O(x^n))/m!),n)}
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, 2*k^k*(k+2)^(k-1)*x^k/(1+k*(k+2)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, 2*(-1)^(n-k)*binomial(n,k)*k^n*(k+2)^(n-1))}
    
  • PARI
    {a(n)=polcoeff(1+2*x*(1+2*x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(1+2*x*(1-2*x)^n/prod(k=0, n, 1-(k+2)*x +x*O(x^n)), n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = 1/n! * Sum_{k=0..n} 2*(-1)^(n-k)*binomial(n,k) * k^n * (k+2)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} 2*k^k*(k+2)^(k-1)*x^k / (1 + k*(k+2)*x)^(k+1).
a(n) = [x^n] 1 + 2*x*(1+2*x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 + 2*x*(1-2*x)^(n-1) / Product_{k=1..n} (1-(k+2)*x).
a(n) ~ 2^(2*n+1/2) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+1)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 22 2014

A217905 O.g.f.: Sum_{n>=0} -n^n*(n-1)^(n-1) * exp(-n*(n-1)*x) * x^n / n!.

Original entry on oeis.org

1, -1, -2, -14, -184, -3532, -89256, -2800016, -104967808, -4578528464, -227816059360, -12735645181536, -790296855912576, -53905019035510528, -4008716449677965312, -322807879692969879552, -27983800239966141382656, -2598368754552749176202496, -257284990746988090769530368
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} -(n-1)^(n-1) * exp(-(n-1)*x) * x^n/n!.

Examples

			O.g.f.: A(x) = 1 - x - 2*x^2 - 14*x^3 - 184*x^4 - 3532*x^5 - 89256*x^6 +...
where
A(x) = 1 - 1^1*0^0*x*exp(-1*0*x) - 2^2*1^1*exp(-2*1*x)*x^2/2! - 3^3*2^2*exp(-3*2*x)*x^3/3! - 4^4*3^3*exp(-4*3*x)*x^4/4! - 5^5*4^4*exp(-5*4*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Join[{1, -1}, Table[(1/n!)*Sum[(-1)^(n - k + 1)*Binomial[n, k]*k^n*(k - 1)^(n - 1), {k, 0, n}], {n, 2, 50}]] (* G. C. Greubel, Nov 16 2017 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,-m^m*(m-1)^(m-1)*x^m*exp(-m*(m-1)*x+x*O(x^n))/m!),n)}
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, -k^k*(k-1)^(k-1)*x^k/(1+k*(k-1)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, -(-1)^(n-k)*binomial(n,k)*k^n*(k-1)^(n-1))}
    
  • PARI
    {a(n)=polcoeff(1-x*(1-x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(1-x*(1+x)^n/prod(k=0, n, 1-(k-1)*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = -A191236(n-1) for n>=1. [corrected by Vaclav Kotesovec, Aug 22 2018]
a(n) = 1/n! * Sum_{k=0..n} -(-1)^(n-k)*binomial(n,k) * k^n * (k-1)^(n-1) for n>=0.
a(n) = 1/n! * [x^n] Sum_{k>=0} -k^k*(k-1)^(k-1)*x^k / (1 + k*(k-1)*x)^(k+1).
a(n) = [x^n] 1 - x*(1-x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 - x*(1+x)^(n-1) / Product_{k=1..n} (1-(k-1)*x).
a(n) ~ -2^(n-1) * exp(n*(r-1)-r) * n^(n - 3/2) / (sqrt(Pi*(r-1)*(2-r)) * r^(n-1)), where r = 2 + LambertW(-2*exp(-2)) = A256500 = 1.5936242600400400923230418... - Vaclav Kotesovec, Aug 22 2018

A106533 The rumor constant: decimal expansion of the number x defined by x*e^(2 - 2*x) = 1.

Original entry on oeis.org

2, 0, 3, 1, 8, 7, 8, 6, 9, 9, 7, 9, 9, 7, 9, 9, 5, 3, 8, 3, 8, 4, 7, 9, 0, 6, 2, 0, 6, 2, 4, 1, 9, 8, 7, 9, 1, 0, 5, 4, 9, 8, 7, 8, 7, 5, 9, 0, 5, 7, 0, 3, 1, 7, 5, 0, 0, 2, 4, 7, 7, 4, 4, 1, 5, 1, 9, 5, 7, 5, 0, 7, 5, 9, 1, 9, 0, 6, 0, 2, 4, 8, 8, 3, 6, 2, 5, 0, 3, 6, 1, 6, 9, 0, 7, 7, 9, 6, 4, 2, 9, 1, 4, 6, 9
Offset: 0

Views

Author

Robert G. Wilson v, May 03 2005

Keywords

Examples

			c = 0.20318786997997995383847906206241987910549878759057031750024774...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ -ProductLog[ -2/E^2]/2, 10, 111][[1]]
    RealDigits[x/.FindRoot[x E^(2-2x)==1,{x,2},WorkingPrecision->120]][[1]] (* Harvey P. Dale, Jul 05 2025 *)
  • PARI
    solve(x=0, 0.5, x*exp(2-2*x)-1) \\ Michel Marcus, Mar 13 2016

Formula

Solution to x*exp(2 - 2*x) = 1 with x not equal to 1.
Equals -1/2*LambertW(-2*exp(-2)). - Vladeta Jovovic, May 30 2005
Constant c satisfies: exp(c*x)/(1-2*c) = Sum_{n>=0} (x + 2*n)^n * exp(-2*n)/n!. - Paul D. Hanna, Mar 12 2016
Equals (2-A256500)/2. - Miko Labalan, Dec 18 2024

A217902 O.g.f.: Sum_{n>=0} 3*n^n*(n+3)^(n-1) * exp(-n*(n+3)*x) * x^n / n!.

Original entry on oeis.org

1, 3, 18, 210, 3696, 86436, 2521800, 88274640, 3608360064, 168822613872, 8901871248480, 522534101560224, 33804242536287744, 2390169742849449216, 183412961210465667072, 15183107016739655860224, 1348837954231568133427200, 128012762381954718934183680
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} 3*(n+3)^(n-1) * exp(-(n+3)*x) * x^n/n!.

Examples

			O.g.f.: A(x) = 1 + 3*x + 18*x^2 + 210*x^3 + 3696*x^4 + 86436*x^5 + 2521800*x^6 +...
where
A(x) = 1 + 3*1^1*4^0*x*exp(-1*4*x) + 3*2^2*5^1*exp(-2*5*x)*x^2/2! + 3*3^3*6^2*exp(-3*6*x)*x^3/3! + 3*4^4*7^3*exp(-4*7*x)*x^4/4! + 3*5^5*8^4*exp(-5*8*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n-1,j]*3^(n-j)*StirlingS2[n+j,n],{j,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, May 22 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,3*m^m*(m+3)^(m-1)*x^m*exp(-m*(m+3)*x+x*O(x^n))/m!),n)}
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, 3*k^k*(k+3)^(k-1)*x^k/(1+k*(k+3)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, 3*(-1)^(n-k)*binomial(n,k)*k^n*(k+3)^(n-1))}
    
  • PARI
    {a(n)=polcoeff(1+3*x*(1+3*x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(1+3*x*(1-3*x)^n/prod(k=0, n, 1-(k+3)*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = 1/n! * Sum_{k=0..n} 3*(-1)^(n-k)*binomial(n,k) * k^n * (k+3)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} 3*k^k*(k+3)^(k-1)*x^k / (1 + k*(k+3)*x)^(k+1).
a(n) = [x^n] 1 + 3*x*(1+3*x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 + 3*x*(1-3*x)^(n-1) / Product_{k=1..n} (1-(k+3)*x).
a(n) ~ 3 * 2^(2*n) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+3/2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 22 2014

A217903 O.g.f.: Sum_{n>=0} 4*n^n*(n+4)^(n-1) * exp(-n*(n+4)*x) * x^n / n!.

Original entry on oeis.org

1, 4, 28, 356, 6696, 165148, 5030124, 182425664, 7681137152, 368519318396, 19855601635860, 1187545259985444, 78096484084586904, 5602487847925307152, 435490669526307321808, 36468662242145922271968, 3273635846285796437437824, 313622489632532976209812284
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} 4*(n+4)^(n-1) * exp(-(n+4)*x) * x^n/n!.

Examples

			O.g.f.: A(x) = 1 + 4*x + 28*x^2 + 356*x^3 + 6696*x^4 + 165148*x^5 + 5030124*x^6 +...
where
A(x) = 1 + 4*1^1*5^0*x*exp(-1*5*x) + 4*2^2*6^1*exp(-2*6*x)*x^2/2! + 4*3^3*7^2*exp(-3*7*x)*x^3/3! + 4*4^4*8^3*exp(-4*8*x)*x^4/4! + 4*5^5*9^4*exp(-5*9*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n-1,j]*4^(n-j)*StirlingS2[n+j,n],{j,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, May 22 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,4*m^m*(m+4)^(m-1)*x^m*exp(-m*(m+4)*x+x*O(x^n))/m!),n)}
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, 4*k^k*(k+4)^(k-1)*x^k/(1+k*(k+4)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, 4*(-1)^(n-k)*binomial(n,k)*k^n*(k+4)^(n-1))}
    
  • PARI
    {a(n)=polcoeff(1+4*x*(1+4*x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(1+4*x*(1-4*x)^n/prod(k=0, n, 1-(k+4)*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = 1/n! * Sum_{k=0..n} 4*(-1)^(n-k)*binomial(n,k) * k^n * (k+4)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} 4*k^k*(k+4)^(k-1)*x^k / (1 + k*(k+4)*x)^(k+1).
a(n) = [x^n] 1 + 4*x*(1+4*x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 + 4*x*(1-4*x)^(n-1) / Product_{k=1..n} (1-(k+4)*x).
a(n) ~ 2^(2*n+5/2) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 22 2014

A218668 O.g.f.: Sum_{n>=0} 1/(1-n^2*x)^n * x^n/n! * exp(-x/(1-n^2*x)).

Original entry on oeis.org

1, 0, 1, 3, 22, 161, 1546, 18857, 270320, 4471693, 85455574, 1865128265, 45735737037, 1247518965519, 37654095184226, 1250673144714138, 45415758777730668, 1792734161930717221, 76595370803745016626, 3529261203030717032927, 174742139545017029583279
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2012

Keywords

Comments

Compare g.f. to the curious identity:
1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-x*(1+n*x)).

Examples

			O.g.f.: A(x) = 1 + x^2 + 3*x^3 + 22*x^4 + 161*x^5 + 1546*x^6 + 18857*x^7 +...
where
A(x) = exp(-x) + x/(1-x)*exp(-x/(1-x)) + x^2/(1-4*x)^2/2!*exp(-x/(1-4*x)) + x^3/(1-9*x)^3/3!*exp(-x/(1-9*x)) + x^4/(1-16*x)^4/4!*exp(-x/(1-16*x)) + x^5/(1-25*x)^5/5!*exp(-x/(1-25*x)) +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x,X=x+x*O(x^n));A=sum(k=0,n,1/(1-k^2*X)^k*x^k/k!*exp(-X/(1-k^2*X)));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

A217904 O.g.f.: Sum_{n>=0} 5*n^n*(n+5)^(n-1) * exp(-n*(n+5)*x) * x^n / n!.

Original entry on oeis.org

1, 5, 40, 550, 11000, 285380, 9064560, 340521520, 14773539200, 727281054640, 40072285049600, 2444188361990880, 163550098793059200, 11915396563502988800, 939110495156447488000, 79629365649015094272000, 7229173136192077603737600, 699726658343948617515436800
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} 5*(n+5)^(n-1) * exp(-(n+5)*x) * x^n/n!.
From Vaclav Kotesovec, May 22 2014: (Start)
Generally, for p>=1, a(n) = 1/n!*Sum_{k=0..n} p*(-1)^(n-k) * binomial(n,k) * k^n * (k+p)^(n-1) = Sum_{j=0..n-1} binomial(n-1,j) * p^(n-j) * StirlingS2(n+j,n).
a(n) ~ p * 2^(2*n-3/2+p/2) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+p/2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599...
(End)

Examples

			O.g.f.: A(x) = 1 + 5*x + 40*x^2 + 550*x^3 + 11000*x^4 + 285380*x^5 + 9064560*x^6 +...
where
A(x) = 1 + 5*1^1*6^0*x*exp(-1*6*x) + 5*2^2*7^1*exp(-2*7*x)*x^2/2! + 5*3^3*8^2*exp(-3*8*x)*x^3/3! + 5*4^4*9^3*exp(-4*9*x)*x^4/4! + 5*5^5*10^4*exp(-5*10*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n-1,j]*5^(n-j)*StirlingS2[n+j,n],{j,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, May 22 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,5*m^m*(m+5)^(m-1)*x^m*exp(-m*(m+5)*x+x*O(x^n))/m!),n)}
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, 5*k^k*(k+5)^(k-1)*x^k/(1+k*(k+5)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, 5*(-1)^(n-k)*binomial(n,k)*k^n*(k+5)^(n-1))}
    
  • PARI
    {a(n)=polcoeff(1+5*x*(1+5*x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(1+5*x*(1-5*x)^n/prod(k=0, n, 1-(k+5)*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = 1/n! * Sum_{k=0..n} 5*(-1)^(n-k)*binomial(n,k) * k^n * (k+5)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} 5*k^k*(k+5)^(k-1)*x^k / (1 + k*(k+5)*x)^(k+1).
a(n) = [x^n] 1 + 5*x*(1+5*x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 + 5*x*(1-5*x)^(n-1) / Product_{k=1..n} (1-(k+5)*x).
a(n) ~ 5 * 2^(2*n+1) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+5/2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 22 2014

A217910 O.g.f.: Sum_{n>=0} n^n*(2*n+1)^(n-1) * exp(-n*(2*n+1)*x) * x^n / n!.

Original entry on oeis.org

1, 1, 7, 125, 3641, 148297, 7792275, 502572905, 38466067169, 3409770740129, 343687137315215, 38829855954523317, 4861184771611069929, 668044273723230765337, 99988042875734734075243, 16191529121372446646518737, 2820684538705808192370559425
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} (2*n+1)^(n-1) * exp(-(2*n+1)*x) * x^n/n!.

Examples

			O.g.f.: A(x) = 1 + x + 7*x^2 + 125*x^3 + 3641*x^4 + 148297*x^5 + 7792275*x^6 +...
where
A(x) = 1 + 1^1*3^0*x*exp(-1*3*x) + 2^2*5^1*exp(-2*5*x)*x^2/2! + 3^3*7^2*exp(-3*7*x)*x^3/3! + 4^4*9^3*exp(-4*9*x)*x^4/4! + 5^5*11^4*exp(-5*11*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n-1,j]*2^j*StirlingS2[n+j,n],{j,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, May 22 2014 *)
  • PARI
    {a(n)=polcoeff(sum(k=0,n,k^k*(2*k+1)^(k-1)*x^k*exp(-k*(2*k+1)*x+x*O(x^n))/k!),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=1/n!*polcoeff(sum(k=0, n, k^k*(2*k+1)^(k-1)*x^k/(1+k*(2*k+1)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, (-1)^(n-k)*binomial(n,k)*k^n*(2*k+1)^(n-1))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff(1+x*(1+x)^(n-1)/prod(k=0, n, 1-2*k*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff(1+x*(1-x)^n/prod(k=0, n, 1-(2*k+1)*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * k^n * (2*k+1)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} k^k*(2*k+1)^(k-1)*x^k / (1 + k*(2*k+1)*x)^(k+1).
a(n) = [x^n] 1 + x*(1+x)^(n-1) / Product_{k=1..n} (1 - 2*k*x).
a(n) = [x^n] 1 + x*(1-x)^(n-1) / Product_{k=1..n} (1 - (2*k+1)*x).
a(n) ~ 2^(3*n-9/4) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+1/4)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... = 2*A106533. - Vaclav Kotesovec, May 22 2014

A218669 O.g.f.: Sum_{n>=0} 1/(1-n^3*x)^n * x^n/n! * exp(-x/(1-n^3*x)).

Original entry on oeis.org

1, 0, 1, 7, 97, 1561, 41136, 1551814, 72440460, 4281320257, 324623105584, 30086950057627, 3299720918091511, 428431079916572044, 65637957066642609845, 11659659637028895337265, 2367270866164121777222596, 546795407830461739380895161, 143176487805296033192642234802
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2012

Keywords

Comments

Compare g.f. to the curious identity:
1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-x*(1+n*x)).

Examples

			O.g.f.: A(x) = 1 + x^2 + 7*x^3 + 97*x^4 + 1561*x^5 + 41136*x^6 +...
where
A(x) = exp(-x) + x/(1-x)*exp(-x/(1-x)) + x^2/(1-8*x)^2/2!*exp(-x/(1-8*x)) + x^3/(1-27*x)^3/3!*exp(-x/(1-27*x)) + x^4/(1-64*x)^4/4!*exp(-x/(1-64*x)) + x^5/(1-125*x)^5/5!*exp(-x/(1-125*x)) +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x,X=x+x*O(x^n));A=sum(k=0,n,1/(1-k^3*X)^k*x^k/k!*exp(-X/(1-k^3*X)));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
Previous Showing 11-20 of 61 results. Next