cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A139267 Twice octagonal numbers: 2*n*(3*n-2).

Original entry on oeis.org

0, 2, 16, 42, 80, 130, 192, 266, 352, 450, 560, 682, 816, 962, 1120, 1290, 1472, 1666, 1872, 2090, 2320, 2562, 2816, 3082, 3360, 3650, 3952, 4266, 4592, 4930, 5280, 5642, 6016, 6402, 6800, 7210, 7632, 8066, 8512, 8970, 9440, 9922
Offset: 0

Views

Author

Omar E. Pol, May 14 2008, May 19 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 2,..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A033580 in the same spiral. - Omar E. Pol, Sep 09 2011

Crossrefs

Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=12).

Programs

Formula

a(n) = 2*A000567(n) = 6*n^2 - 4*n = 2*n*(3*n - 2).
a(n) = a(n-1) + 12*n - 10, with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: x*(2+10*x)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 06 2012
After 0, a(n) = Sum_{i=0..n-1} (12*i + 2). - Bruno Berselli, Sep 11 2013
E.g.f.: 2*x*(1 + 3*x)*exp(x). - G. C. Greubel, Sep 18 2019

A180223 a(n) = (11*n^2 - 7*n)/2.

Original entry on oeis.org

0, 2, 15, 39, 74, 120, 177, 245, 324, 414, 515, 627, 750, 884, 1029, 1185, 1352, 1530, 1719, 1919, 2130, 2352, 2585, 2829, 3084, 3350, 3627, 3915, 4214, 4524, 4845, 5177, 5520, 5874, 6239, 6615, 7002, 7400, 7809, 8229, 8660
Offset: 0

Views

Author

Graziano Aglietti (mg5055(AT)mclink.it), Aug 16 2010

Keywords

Comments

This sequence is related to A050441 by n*a(n) - Sum_{i=0..n-1} a(i) = 2*A050441(n). - Bruno Berselli, Aug 19 2010
Sum of n-th heptagonal number (A000566) and n-th octagonal number (A000567). - Bruno Berselli, Jun 11 2013
Create a triangle with T(r,1) = r^2 and T(r,c) = r^2 + r*c + c^2. The difference of the sum of the terms in row n and those in row n-1 is a(n). - J. M. Bergot, Jun 17 2013

Crossrefs

Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=11). - Bruno Berselli, Jun 10 2013

Programs

Formula

G.f.: x*(2+9*x)/(1-x)^3. - Bruno Berselli, Aug 19 2010 - corrected in Apr 18 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with n>2. - Bruno Berselli, Aug 19 2010
a(n) = n + A226492(n). - Bruno Berselli, Jun 11 2013
E.g.f.: x*(4 + 11*x)*exp(x)/2. - G. C. Greubel, Aug 24 2015

A218471 a(n) = n*(7*n-3)/2.

Original entry on oeis.org

0, 2, 11, 27, 50, 80, 117, 161, 212, 270, 335, 407, 486, 572, 665, 765, 872, 986, 1107, 1235, 1370, 1512, 1661, 1817, 1980, 2150, 2327, 2511, 2702, 2900, 3105, 3317, 3536, 3762, 3995, 4235, 4482, 4736, 4997, 5265, 5540, 5822, 6111, 6407, 6710, 7020, 7337
Offset: 0

Views

Author

Philippe Deléham, Mar 26 2013

Keywords

Crossrefs

Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=7). - Bruno Berselli, Jun 10 2013

Programs

Formula

G.f.: x*(2+5*x)/(1-x)^3.
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) with a(0)=0, a(1)=2, a(2)=11.
a(n) = A001106(n) + n.
a(n) = A022264(n) - n.
a(n) = A022265(n) - 2*n.
a(n) = A186029(n) - 3*n.
a(n) = A179986(n) - 4*n.
a(n) = A024966(n) - 5*n.
a(n) = A174738(7*n+1).
E.g.f.: (x/2)*(7*x + 4)*exp(x). - G. C. Greubel, Aug 23 2017

A152965 Twice 12-gonal numbers: a(n) = 2*n*(5*n-4).

Original entry on oeis.org

0, 2, 24, 66, 128, 210, 312, 434, 576, 738, 920, 1122, 1344, 1586, 1848, 2130, 2432, 2754, 3096, 3458, 3840, 4242, 4664, 5106, 5568, 6050, 6552, 7074, 7616, 8178, 8760, 9362, 9984, 10626, 11288, 11970, 12672, 13394, 14136, 14898, 15680, 16482, 17304, 18146, 19008
Offset: 0

Views

Author

Omar E. Pol, Dec 21 2008

Keywords

Crossrefs

Cf. A051624 (12-gonal numbers), A051874.
Cf. numbers of the form n*(n*k - k + 4)/2 listed in A226488 (this sequence is the case k=20). - Bruno Berselli, Jun 10 2013

Programs

Formula

a(n) = 2*A051624(n).
From Vincenzo Librandi, Jul 10 2012: (Start)
G.f.: 2*x*(1+9*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: 2*exp(x)*x*(1 + 5*x).
a(n) = n + A051874(n). (End)

A226489 a(n) = n*(15*n-11)/2.

Original entry on oeis.org

0, 2, 19, 51, 98, 160, 237, 329, 436, 558, 695, 847, 1014, 1196, 1393, 1605, 1832, 2074, 2331, 2603, 2890, 3192, 3509, 3841, 4188, 4550, 4927, 5319, 5726, 6148, 6585, 7037, 7504, 7986, 8483, 8995, 9522, 10064, 10621, 11193, 11780, 12382, 12999, 13631, 14278, 14940
Offset: 0

Views

Author

Bruno Berselli, Jun 09 2013

Keywords

Comments

Sum of n-th 9-gonal (nonagonal) number and n-th 10-gonal (decagonal) number.
Sum of reciprocals of a(n), for n > 0: 0.614629940137818703272919217222307...

Crossrefs

Cf. numbers of the form n*(n*k - k + 4)/2, this sequence is the case k=15: see list in A226488.

Programs

  • Magma
    [n*(15*n-11)/2: n in [0..50]];
    
  • Magma
    I:=[0,2,19]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[n (15 n - 11)/2, {n, 0, 50}]
    CoefficientList[Series[x (2 + 13 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • PARI
    a(n)=n*(15*n-11)/2 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: x*(2+13*x)/(1-x)^3.
a(n) + a(-n) = A064761(n).
From Elmo R. Oliveira, Jan 12 2025: (Start)
E.g.f.: exp(x)*x*(4 + 15*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A152995 Twice 11-gonal numbers: a(n) = n*(9*n-7).

Original entry on oeis.org

0, 2, 22, 60, 116, 190, 282, 392, 520, 666, 830, 1012, 1212, 1430, 1666, 1920, 2192, 2482, 2790, 3116, 3460, 3822, 4202, 4600, 5016, 5450, 5902, 6372, 6860, 7366, 7890, 8432, 8992, 9570, 10166, 10780, 11412, 12062, 12730, 13416, 14120
Offset: 0

Views

Author

Omar E. Pol, Dec 22 2008

Keywords

Crossrefs

Cf. A051682 (11-gonal numbers).
Cf. A226488.

Programs

  • GAP
    List([0..50], n-> n*(9*n-7)); # G. C. Greubel, Sep 01 2019
  • Magma
    [n*(9*n-7): n in [0..50]];
    
  • Maple
    seq(n*(9*n-7), n=0..50); # G. C. Greubel, Sep 01 2019
  • Mathematica
    Table[n(9n-7),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{0,2,22},40] (* Harvey P. Dale, Nov 02 2011 *)
    2*PolygonalNumber[11,Range[0,40]] (* Harvey P. Dale, May 31 2024 *)
  • PARI
    a(n)=n*(9*n-7) \\ Charles R Greathouse IV, Jun 17 2017
    
  • Sage
    [n*(9*n-7) for n in (0..50)] # G. C. Greubel, Sep 01 2019
    

Formula

a(n) = 9*n^2 - 7*n = A051682(n)*2.
a(n) = a(n-1) + 18*n - 16 (with a(0)=0). - Vincenzo Librandi, Nov 27 2010
a(0)=0, a(1)=2, a(2)=22, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Nov 02 2011
From G. C. Greubel, Sep 01 2019: (Start)
G.f.: 2*x*(1+8*x)/(1-x)^3.
E.g.f.: x*(2+9*x)*exp(x). (End)

A226490 a(n) = n*(19*n-15)/2.

Original entry on oeis.org

0, 2, 23, 63, 122, 200, 297, 413, 548, 702, 875, 1067, 1278, 1508, 1757, 2025, 2312, 2618, 2943, 3287, 3650, 4032, 4433, 4853, 5292, 5750, 6227, 6723, 7238, 7772, 8325, 8897, 9488, 10098, 10727, 11375, 12042, 12728, 13433, 14157, 14900, 15662, 16443, 17243, 18062
Offset: 0

Views

Author

Bruno Berselli, Jun 09 2013

Keywords

Comments

Sum of n-th hendecagonal number and n-th dodecagonal number.
Sum of reciprocals of a(n), for n > 0: 0.59314195720519963010713286193275...

Crossrefs

Cf. numbers of the form n*(n*k - k + 4)/2, this sequence is the case k=19: see list in A226488.

Programs

  • Magma
    [n*(19*n-15)/2: n in [0..50]];
    
  • Magma
    I:=[0,2,23]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[n (19 n - 15)/2, {n, 0, 50}]
    CoefficientList[Series[x (2 + 17 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{3,-3,1},{0,2,23},50] (* Harvey P. Dale, Aug 17 2017 *)
  • PARI
    a(n)=n*(19*n-15)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: x*(2+17*x)/(1-x)^3.
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: exp(x)*x*(4 + 19*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = n + A051873(n). (End)

A226491 a(n) = n*(21*n-17)/2.

Original entry on oeis.org

0, 2, 25, 69, 134, 220, 327, 455, 604, 774, 965, 1177, 1410, 1664, 1939, 2235, 2552, 2890, 3249, 3629, 4030, 4452, 4895, 5359, 5844, 6350, 6877, 7425, 7994, 8584, 9195, 9827, 10480, 11154, 11849, 12565, 13302, 14060, 14839, 15639, 16460, 17302, 18165, 19049, 19954
Offset: 0

Views

Author

Bruno Berselli, Jun 09 2013

Keywords

Comments

Sum of n-th dodecagonal number and n-th tridecagonal number.
Sum of reciprocals of a(n), for n > 0: 0.58517199913243139233033474262449...

Crossrefs

Cf. numbers of the form n*(n*k - k + 4)/2, this sequence is the case k=21: see list in A226488.

Programs

  • Magma
    [n*(21*n-17)/2: n in [0..50]];
    
  • Magma
    I:=[0,2,25]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[n (21 n - 17)/2, {n, 0, 50}]
    CoefficientList[Series[x (2 + 19 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{3,-3,1},{0,2,25},50] (* Harvey P. Dale, Feb 01 2023 *)
  • PARI
    a(n)=n*(21*n-17)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: x*(2+19*x)/(1-x)^3.
a(n) + a(-n) = A064762(n).
From Elmo R. Oliveira, Jan 12 2025: (Start)
E.g.f.: exp(x)*x*(4 + 21*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A139268 Twice nonagonal numbers (or twice 9-gonal numbers): a(n) = n*(7*n-5).

Original entry on oeis.org

0, 2, 18, 48, 92, 150, 222, 308, 408, 522, 650, 792, 948, 1118, 1302, 1500, 1712, 1938, 2178, 2432, 2700, 2982, 3278, 3588, 3912, 4250, 4602, 4968, 5348, 5742, 6150, 6572, 7008, 7458, 7922, 8400, 8892, 9398, 9918, 10452, 11000
Offset: 0

Views

Author

Omar E. Pol, May 15 2008

Keywords

Crossrefs

Cf. numbers of the form n*(n*k - k + 4)/2 listed in A226488 (this sequence is the case k=14). - Bruno Berselli, Jun 10 2013

Programs

Formula

a(n) = 2*A001106(n) = 7*n^2 - 5*n = n*(7*n-5).
a(n) = 14*n + a(n-1) - 12, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 2*x*(1 + 6*x)/(1 - x)^3. - Philippe Deléham, Apr 03 2013
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: exp(x)*x*(2 + 7*x).
a(n) = n + A051868(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A152997 Twice 13-gonal numbers: a(n) = n*(11*n - 9).

Original entry on oeis.org

0, 2, 26, 72, 140, 230, 342, 476, 632, 810, 1010, 1232, 1476, 1742, 2030, 2340, 2672, 3026, 3402, 3800, 4220, 4662, 5126, 5612, 6120, 6650, 7202, 7776, 8372, 8990, 9630, 10292, 10976, 11682, 12410, 13160, 13932, 14726, 15542, 16380, 17240, 18122, 19026, 19952, 20900, 21870, 22862, 23876
Offset: 0

Views

Author

Omar E. Pol, Dec 22 2008

Keywords

Crossrefs

Cf. A051865 (13-gonal numbers).
Cf. numbers of the form n*(n*k - k + 4)/2 listed in A226488 (this sequence is the case k=22). - Bruno Berselli, Jun 10 2013

Programs

Formula

a(n) = 11*n^2 - 9*n = A051865(n)*2.
a(n) = a(n-1) + 22*n - 20 (with a(0)=0). - Vincenzo Librandi, Nov 27 2010
From G. C. Greubel, Sep 01 2019: (Start)
G.f.: 2*x*(1 + 10*x)/(1-x)^3.
E.g.f.: x*(2 + 11*x)*exp(x). (End)

Extensions

Terms a(39) onward added by G. C. Greubel, Sep 01 2019
Previous Showing 11-20 of 21 results. Next