cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 53 results. Next

A331732 Odd part of A241909(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 9, 1, 5, 3, 27, 1, 25, 1, 81, 9, 7, 1, 15, 1, 125, 27, 243, 1, 49, 3, 729, 5, 625, 1, 75, 1, 11, 81, 2187, 9, 35, 1, 6561, 243, 343, 1, 375, 1, 3125, 25, 19683, 1, 121, 3, 45, 729, 15625, 1, 21, 27, 2401, 2187, 59049, 1, 245, 1, 177147, 125, 13, 81, 1875, 1, 78125, 6561, 225, 1, 77, 1, 531441, 15, 390625, 9, 9375, 1, 1331
Offset: 1

Views

Author

Antti Karttunen, Jan 25 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n/2^valuation(n, 2));
    A241909(n) = if(1==n||isprime(n),2^primepi(n),my(f=factor(n),h=1,i,m=1,p=1,k=1); while(k<=#f~, p = nextprime(1+p); i = primepi(f[k,1]); m *= p^(i-h); h = i; if(f[k,2]>1, f[k,2]--, k++)); (p*m));
    A331732(n) = A000265(A241909(n));

Formula

a(n) = A000265(A241909(n)).

A279355 Permutation of natural numbers: a(n) = A249817(A241909(n)).

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 16, 5, 6, 21, 32, 25, 64, 45, 18, 7, 128, 15, 256, 55, 54, 93, 512, 49, 12, 189, 10, 115, 1024, 51, 2048, 11, 162, 381, 36, 35, 4096, 765, 486, 91, 8192, 159, 16384, 235, 50, 1533, 32768, 121, 24, 33, 1458, 475, 65536, 27, 108, 203, 4374, 3069, 131072, 125, 262144, 6141, 250, 13, 324, 483, 524288, 955, 13122, 105, 1048576, 77
Offset: 1

Views

Author

Antti Karttunen, Dec 12 2016

Keywords

Crossrefs

Inverse: A279356.

Formula

a(n) = A249817(A241909(n)).

A056239 If n = Product_{k >= 1} (p_k)^(c_k) where p_k is k-th prime and c_k >= 0 then a(n) = Sum_{k >= 1} k*c_k.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 5, 4, 7, 5, 8, 5, 6, 6, 9, 5, 6, 7, 6, 6, 10, 6, 11, 5, 7, 8, 7, 6, 12, 9, 8, 6, 13, 7, 14, 7, 7, 10, 15, 6, 8, 7, 9, 8, 16, 7, 8, 7, 10, 11, 17, 7, 18, 12, 8, 6, 9, 8, 19, 9, 11, 8, 20, 7, 21, 13, 8, 10, 9, 9, 22, 7, 8, 14, 23, 8, 10, 15, 12, 8, 24, 8, 10
Offset: 1

Views

Author

Leroy Quet, Aug 19 2000

Keywords

Comments

A pseudo-logarithmic function in the sense that a(b*c) = a(b)+a(c) and so a(b^c) = c*a(b) and f(n) = k^a(n) is a multiplicative function. [Cf. A248692 for example.] Essentially a function from the positive integers onto the partitions of the nonnegative integers (1->0, 2->1, 3->2, 4->1+1, 5->3, 6->1+2, etc.) so each value a(n) appears A000041(a(n)) times, first with the a(n)-th prime and last with the a(n)-th power of 2. Produces triangular numbers from primorials. - Henry Bottomley, Nov 22 2001
Michael Nyvang writes (May 08 2006) that the Danish composer Karl Aage Rasmussen discovered this sequence in the 1990's: it has excellent musical properties.
All A000041(a(n)) different n's with the same value a(n) are listed in row a(n) of triangle A215366. - Alois P. Heinz, Aug 09 2012
a(n) is the sum of the parts of the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} (p_j-th prime) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(33) = 7 because the partition with Heinz number 33 = 3 * 11 is [2,5]. - Emeric Deutsch, May 19 2015

Examples

			a(12) = 1*2 + 2*1 = 4, since 12 = 2^2 *3^1 = (p_1)^2 *(p_2)^1.
		

Crossrefs

Programs

  • Haskell
    a056239 n = sum $ zipWith (*) (map a049084 $ a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Apr 27 2013
    
  • Maple
    # To get 10000 terms. First make prime table: M:=10000; pl:=array(1..M); for i from 1 to M do pl[i]:=0; od: for i from 1 to M do if ithprime(i) > M then break; fi; pl[ithprime(i)]:=i; od:
    # Decode Maple's amazing syntax for factoring integers: g:=proc(n) local e,p,t1,t2,t3,i,j,k; global pl; t1:=ifactor(n); t2:=nops(t1); if t2 = 2 and whattype(t1) <> `*` then p:=op(1,op(1,t1)); e:=op(2,t1); t3:=pl[p]*e; else
    t3:=0; for i from 1 to t2 do j:=op(i,t1); if nops(j) = 1 then e:=1; p:=op(1,j); else e:=op(2,j); p:=op(1,op(1,j)); fi; t3:=t3+pl[p]*e; od: fi; t3; end; # N. J. A. Sloane, May 10 2006
    A056239 := proc(n) add( numtheory[pi](op(1,p))*op(2,p), p = ifactors(n)[2]) ; end proc: # R. J. Mathar, Apr 20 2010
    # alternative:
    with(numtheory): a := proc (n) local B: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: add(B(n)[i], i = 1 .. nops(B(n))) end proc: seq(a(n), n = 1 .. 130); # Emeric Deutsch, May 19 2015
  • Mathematica
    a[1] = 0; a[2] = 1; a[p_?PrimeQ] := a[p] = PrimePi[p];
    a[n_] := a[n] = Total[#[[2]]*a[#[[1]]] & /@ FactorInteger[n]]; a /@ Range[91] (* Jean-François Alcover, May 19 2011 *)
    Table[Total[FactorInteger[n] /. {p_, c_} /; p > 0 :> PrimePi[p] c], {n, 91}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    A056239(n) = if(1==n,0,my(f=factor(n)); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); \\ Antti Karttunen, Oct 26 2014, edited Jan 13 2020
    
  • Python
    from sympy import primepi, factorint
    def A056239(n): return sum(primepi(p)*e for p, e in factorint(n).items()) # Chai Wah Wu, Jan 01 2023
  • Scheme
    (require 'factor) ;; Uses the function factor available in Aubrey Jaffer's SLIB Scheme library.
    (define (A056239 n) (apply + (map A049084 (factor n))))
    ;; Antti Karttunen, Oct 26 2014
    

Formula

Totally additive with a(p) = PrimePi(p), where PrimePi(n) = A000720(n).
a(n) = Sum_{k=1..A001221(n)} A049084(A027748(k))*A124010(k). - Reinhard Zumkeller, Apr 27 2013
From Antti Karttunen, Oct 11 2014: (Start)
a(n) = n - A178503(n).
a(n) = A161511(A156552(n)).
a(n) = A227183(A243354(n)).
For all n >= 0:
a(A002110(n)) = A000217(n). [Cf. Henry Bottomley's comment above.]
a(A005940(n+1)) = A161511(n).
a(A243353(n)) = A227183(n).
Also, for all n >= 1:
a(A241909(n)) = A243503(n).
a(A122111(n)) = a(n).
a(A242424(n)) = a(n).
A248692(n) = 2^a(n). (End)
a(n) < A329605(n), a(n) = A001222(A108951(n)), a(A329902(n)) = A112778(n). - Antti Karttunen, Jan 14 2020

A064989 Multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 4, 3, 7, 2, 11, 5, 6, 1, 13, 4, 17, 3, 10, 7, 19, 2, 9, 11, 8, 5, 23, 6, 29, 1, 14, 13, 15, 4, 31, 17, 22, 3, 37, 10, 41, 7, 12, 19, 43, 2, 25, 9, 26, 11, 47, 8, 21, 5, 34, 23, 53, 6, 59, 29, 20, 1, 33, 14, 61, 13, 38, 15, 67, 4, 71, 31, 18, 17, 35, 22, 73, 3, 16
Offset: 1

Views

Author

Vladeta Jovovic, Oct 30 2001

Keywords

Comments

From Antti Karttunen, May 12 2014: (Start)
a(A003961(n)) = n for all n. [This is a left inverse function for the injection A003961.]
Bisections are A064216 (the terms at odd indices) and A064989 itself (the terms at even indices), i.e., a(2n) = a(n) for all n.
(End)
From Antti Karttunen, Dec 18-21 2014: (Start)
When n represents an unordered integer partition via the indices of primes present in its prime factorization (for n >= 2, n corresponds to the partition given as the n-th row of A112798) this operation subtracts one from each part. If n is of the form 2^k (a partition having just k 1's as its parts) the result is an empty partition (which is encoded by 1, having an "empty" factorization).
For all odd numbers n >= 3, a(n) tells which number is located immediately above n in square array A246278. Cf. also A246277.
(End)
Alternatively, if numbers are represented as the multiset of indices of prime factors with multiplicity, this operation subtracts 1 from each element and discards the 0's. - M. F. Hasler, Dec 29 2014

Examples

			a(20) = a(2^2*5) = a(2^2)*a(5) = prevprime(5) = 3.
		

Crossrefs

Cf. A064216 (odd bisection), A003961 (inverse), A151799.
Other sequences whose definition involve or are some other way related with this sequence: A105560, A108951, A118306, A122111, A156552, A163511, A200746, A241909, A243070, A243071, A243072, A243073, A244319, A245605, A245607, A246165, A246266, A246268, A246277, A246278, A246361, A246362, A246371, A246372, A246373, A246374, A246376, A246380, A246675, A246682, A249745, A250470.
Similar prime-shifts towards smaller numbers: A252461, A252462, A252463.

Programs

  • Haskell
    a064989 1 = 1
    a064989 n = product $ map (a008578 . a049084) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012
    (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
    (require 'factor)
    (define (A064989 n) (if (= 1 n) n (apply * (map (lambda (k) (if (zero? k) 1 (A000040 k))) (map -1+ (map A049084 (factor n)))))))
    ;; Antti Karttunen, May 12 2014
    (definec (A064989 n) (if (= 1 n) n (* (A008578 (A055396 n)) (A064989 (A032742 n))))) ;; One based on given recurrence and utilizing memoizing definec-macro.
    (definec (A064989 n) (cond ((= 1 n) n) ((even? n) (A064989 (/ n 2))) (else (A163511 (/ (- (A243071 n) 1) 2))))) ;; Corresponds to one of the alternative formulas, but is very unpractical way to compute this sequence. - Antti Karttunen, Dec 18 2014
    
  • Maple
    q:= proc(p) prevprime(p) end proc: q(2):= 1:
    [seq(mul(q(f[1])^f[2], f = ifactors(n)[2]), n = 1 .. 1000)]; # Robert Israel, Dec 21 2014
  • Mathematica
    Table[Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n, {n, 81}] (* Michael De Vlieger, Jan 04 2016 *)
  • PARI
    { for (n=1, 1000, f=factor(n)~; a=1; j=1; if (n>1 && f[1, 1]==2, j=2); for (i=j, length(f), a*=precprime(f[1, i] - 1)^f[2, i]); write("b064989.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 02 2009
    
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if ((p=f[i,1]) % 2, f[i,1] = precprime(p-1), f[i,1] = 1);); factorback(f);} \\ Michel Marcus, Dec 18 2014
    
  • PARI
    A064989(n)=factorback(Mat(apply(t->[max(precprime(t[1]-1),1),t[2]],Vec(factor(n)~))~)) \\ M. F. Hasler, Dec 29 2014
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    from functools import reduce
    def a(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 15 2017
    
  • Python
    from math import prod
    from sympy import prevprime, factorint
    def A064989(n): return prod(prevprime(p)**e for p, e in  factorint(n>>(~n&n-1).bit_length()).items()) # Chai Wah Wu, Jan 05 2023

Formula

From Antti Karttunen, Dec 18 2014: (Start)
If n = product A000040(k)^e(k) then a(n) = product A008578(k)^e(k) [where A000040(n) gives the n-th prime, and A008578(n) gives 1 for 1 and otherwise the (n-1)-th prime].
a(1) = 1; for n > 1, a(n) = A008578(A055396(n)) * a(A032742(n)). [Above formula represented as a recurrence. Cf. A252461.]
a(1) = 1; for n > 1, a(n) = A008578(A061395(n)) * a(A052126(n)). [Compare to the formula of A252462.]
This prime-shift operation is used in the definitions of many other sequences, thus it can be expressed in many alternative ways:
a(n) = A200746(n) / n.
a(n) = A242424(n) / A105560(n).
a(n) = A122111(A122111(n)/A105560(n)) = A122111(A052126(A122111(n))). [In A112798-partition context: conjugate, remove the largest part (the largest prime factor), and conjugate again.]
a(1) = 1; for n > 1, a(2n) = a(n), a(2n+1) = A163511((A243071(2n+1)-1) / 2).
a(n) = A249818(A250470(A249817(n))). [A250470 is an analogous operation for "going one step up" in the square array A083221 (A083140).]
(End)
Product_{k=1..n} a(k) = n! / A307035(n). - Vaclav Kotesovec, Mar 21 2019
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-q(p))) = 0.220703928... , where q(p) = prevprime(p) (A151799) if p > 2 and q(2) = 1. - Amiram Eldar, Nov 18 2022

A003963 Fully multiplicative with a(p) = k if p is the k-th prime.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 4, 3, 5, 2, 6, 4, 6, 1, 7, 4, 8, 3, 8, 5, 9, 2, 9, 6, 8, 4, 10, 6, 11, 1, 10, 7, 12, 4, 12, 8, 12, 3, 13, 8, 14, 5, 12, 9, 15, 2, 16, 9, 14, 6, 16, 8, 15, 4, 16, 10, 17, 6, 18, 11, 16, 1, 18, 10, 19, 7, 18, 12, 20, 4, 21, 12, 18, 8, 20, 12, 22, 3, 16, 13, 23, 8, 21, 14, 20, 5
Offset: 1

Views

Author

Keywords

Comments

a(n) is the Matula number of the rooted tree obtained from the rooted tree T having Matula number n, by contracting its edges that emanate from the root. Example: a(49) = 16. Indeed, the rooted tree with Matula number 49 is the tree obtained by merging two copies of the tree Y at their roots. Contracting the two edges that emanate from the root, we obtain the star tree with 4 edges having Matula number 16. - Emeric Deutsch, May 01 2015
The Matula (or Matula-Goebel) number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. - Emeric Deutsch, May 01 2015
a(n) is the product of the parts of the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} (p_j-th prime) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(75) = 18; indeed, the partition having Heinz number 75 = 3*5*5 is [2,3,3] and 2*3*3 = 18. - Emeric Deutsch, Jun 03 2015
Let T be the free-commutative-monoid monad on the category Set. Then for each set N we have a canonical function m from TTN to TN. If we let N = {1, 2, 3, ...} and enumerate the primes in the usual way (A000040) then unique prime factorization gives a canonical bijection f from N to TN. Then the sequence is given by a(n) = f^-1(m(T(f)(f(n)))). - Oscar Cunningham, Jul 18 2019

Crossrefs

Programs

  • Haskell
    a003963 n = product $
       zipWith (^) (map a049084 $ a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Jun 30 2012
    
  • Maple
    with(numtheory): a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then pi(n) else a(r(n))*a(s(n)) end if end proc: seq(a(n), n = 1 .. 88);
    # Alternative:
    seq(mul(numtheory:-pi(t[1])^t[2], t=ifactors(n)[2]), n=1..100); # Robert Israel, May 01 2015
  • Mathematica
    a[n_] := Times @@ (PrimePi[ #[[1]] ]^#[[2]]& /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 1, 88}]
  • PARI
    a(n)=f=factor(n);prod(i=1,#f[,1],primepi(f[i,1])^f[i,2]) \\ Charles R Greathouse IV, Apr 26 2012; corrected by Rémy Sigrist, Jul 18 2019
    
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, f[i, 1] = primepi(f[i, 1]); ); factorback(f); } \\ Michel Marcus, Feb 08 2015
    
  • PARI
    A003963(n)={n=factor(n); n[,1]=apply(primepi,n[,1]); factorback(n)} \\ M. F. Hasler, May 03 2018
    
  • Python
    from math import prod
    from sympy import primepi, factorint
    def A003963(n): return prod(primepi(p)**e for p, e in factorint(n).items()) # Chai Wah Wu, Nov 17 2022

Formula

If n = product prime(k)^e(k) then a(n) = product k^e(k).
Multiplicative with a(p^e) = A000720(p)^e. - David W. Wilson, Aug 01 2001
a(n) = Product_{k=1..A001221(n)} A049084(A027748(n,k))^A124010(n,k). - Reinhard Zumkeller, Jun 30 2012
Rec. eq.: a(1)=1, a(k-th prime) = a(k), a(rs)=a(r)a(s). The Maple program is based on this. - Emeric Deutsch, May 01 2015
a(n) = A243504(A241909(n)) = A243499(A156552(n)) = A227184(A243354(n)) - Antti Karttunen, Mar 07 2017

A122111 Self-inverse permutation of the positive integers induced by partition enumeration in A112798 and partition conjugation.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 10, 64, 24, 18, 7, 128, 15, 256, 20, 36, 48, 512, 14, 27, 96, 25, 40, 1024, 30, 2048, 11, 72, 192, 54, 21, 4096, 384, 144, 28, 8192, 60, 16384, 80, 50, 768, 32768, 22, 81, 45, 288, 160, 65536, 35, 108, 56, 576, 1536, 131072, 42
Offset: 1

Views

Author

Keywords

Comments

Factor n; replace each prime(i) with i, take the conjugate partition, replace parts i with prime(i) and multiply out.
From Antti Karttunen, May 12-19 2014: (Start)
For all n >= 1, A001222(a(n)) = A061395(n), and vice versa, A061395(a(n)) = A001222(n).
Because the partition conjugation doesn't change the partition's total sum, this permutation preserves A056239, i.e., A056239(a(n)) = A056239(n) for all n.
(Similarly, for all n, A001221(a(n)) = A001221(n), because the number of steps in the Ferrers/Young-diagram stays invariant under the conjugation. - Note added Apr 29 2022).
Because this permutation commutes with A241909, in other words, as a(A241909(n)) = A241909(a(n)) for all n, from which follows, because both permutations are self-inverse, that a(n) = A241909(a(A241909(n))), it means that this is also induced when partitions are conjugated in the partition enumeration system A241918. (Not only in A112798.)
(End)
From Antti Karttunen, Jul 31 2014: (Start)
Rows in arrays A243060 and A243070 converge towards this sequence, and also, assuming no surprises at the rate of that convergence, this sequence occurs also as the central diagonal of both.
Each even number is mapped to a unique term of A102750 and vice versa.
Conversely, each odd number (larger than 1) is mapped to a unique term of A070003, and vice versa. The permutation pair A243287-A243288 has the same property. This is also used to induce the permutations A244981-A244984.
Taking the odd bisection and dividing out the largest prime factor results in the permutation A243505.
Shares with A245613 the property that each term of A028260 is mapped to a unique term of A244990 and each term of A026424 is mapped to a unique term of A244991.
Conversely, with A245614 (the inverse of above), shares the property that each term of A244990 is mapped to a unique term of A028260 and each term of A244991 is mapped to a unique term of A026424.
(End)
The Maple program follows the steps described in the first comment. The subprogram C yields the conjugate partition of a given partition. - Emeric Deutsch, May 09 2015
The Heinz number of the partition that is conjugate to the partition with Heinz number n. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r). Example: a(3) = 4. Indeed, the partition with Heinz number 3 is [2]; its conjugate is [1,1] having Heinz number 4. - Emeric Deutsch, May 19 2015

Crossrefs

Cf. A088902 (fixed points).
Cf. A112798, A241918 (conjugates the partitions listed in these two tables).
Cf. A243060 and A243070. (Limit of rows in these arrays, and also their central diagonal).
Cf. A319988 (parity of this sequence for n > 1), A336124 (a(n) mod 4).
{A000027, A122111, A241909, A241916} form a 4-group.
{A000027, A122111, A153212, A242419} form also a 4-group.
Cf. also array A350066 [A(i, j) = a(a(i)*a(j))].

Programs

  • Maple
    with(numtheory): c := proc (n) local B, C: B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: C := proc (P) local a: a := proc (j) local c, i: c := 0; for i to nops(P) do if j <= P[i] then c := c+1 else  end if end do: c end proc: [seq(a(k), k = 1 .. max(P))] end proc: mul(ithprime(C(B(n))[q]), q = 1 .. nops(C(B(n)))) end proc: seq(c(n), n = 1 .. 59); # Emeric Deutsch, May 09 2015
    # second Maple program:
    a:= n-> (l-> mul(ithprime(add(`if`(jAlois P. Heinz, Sep 30 2017
  • Mathematica
    A122111[1] = 1; A122111[n_] := Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@Length@l, m = Min@l}, Length@Union@l]] &@Catenate[ConstantArray[PrimePi[#1], #2] & @@@ FactorInteger@n]; Array[A122111, 60] (* JungHwan Min, Aug 22 2016 *)
    a[n_] := Function[l, Product[Prime[Sum[If[jJean-François Alcover, Sep 23 2020, after Alois P. Heinz *)
  • PARI
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m)); \\ Antti Karttunen, Jul 20 2020
    
  • Python
    from sympy import factorint, prevprime, prime, primefactors
    from operator import mul
    def a001222(n): return 0 if n==1 else a001222(n/primefactors(n)[0]) + 1
    def a064989(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a105560(n): return 1 if n==1 else prime(a001222(n))
    def a(n): return 1 if n==1 else a105560(n)*a(a064989(n))
    [a(n) for n in range(1, 101)] # Indranil Ghosh, Jun 15 2017
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (A000040 (A001222 n)) (A122111 (A064989 n)))))
    ;; Antti Karttunen, May 12 2014
    
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (A000079 (A241917 n)) (A003961 (A122111 (A052126 n))))))
    ;; Antti Karttunen, May 12 2014
    
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (expt (A000040 (A071178 n)) (A241919 n)) (A242378bi (A071178 n) (A122111 (A051119 n))))))
    ;; Antti Karttunen, May 12 2014
    

Formula

From Antti Karttunen, May 12-19 2014: (Start)
a(1) = 1, a(p_i) = 2^i, and for other cases, if n = p_i1 * p_i2 * p_i3 * ... * p_{k-1} * p_k, where p's are primes, not necessarily distinct, sorted into nondescending order so that i1 <= i2 <= i3 <= ... <= i_{k-1} <= ik, then a(n) = 2^(ik-i_{k-1}) * 3^(i_{k-1}-i_{k-2}) * ... * p_{i_{k-1}}^(i2-i1) * p_ik^(i1).
This can be implemented as a recurrence, with base case a(1) = 1,
and then using any of the following three alternative formulas:
a(n) = A105560(n) * a(A064989(n)) = A000040(A001222(n)) * a(A064989(n)). [Cf. the formula for A242424.]
a(n) = A000079(A241917(n)) * A003961(a(A052126(n))).
a(n) = (A000040(A071178(n))^A241919(n)) * A242378(A071178(n), a(A051119(n))). [Here ^ stands for the ordinary exponentiation, and the bivariate function A242378(k,n) changes each prime p(i) in the prime factorization of n to p(i+k), i.e., it's the result of A003961 iterated k times starting from n.]
a(n) = 1 + A075157(A129594(A075158(n-1))). [Follows from the commutativity with A241909, please see the comments section.]
(End)
From Antti Karttunen, Jul 31 2014: (Start)
As a composition of related permutations:
a(n) = A153212(A242419(n)) = A242419(A153212(n)).
a(n) = A241909(A241916(n)) = A241916(A241909(n)).
a(n) = A243505(A048673(n)).
a(n) = A064216(A243506(n)).
Other identities. For all n >= 1, the following holds:
A006530(a(n)) = A105560(n). [The latter sequence gives greatest prime factor of the n-th term].
a(2n)/a(n) = A105560(2n)/A105560(n), which is equal to A003961(A105560(n))/A105560(n) when n > 1.
A243505(n) = A052126(a(2n-1)) = A052126(a(4n-2)).
A066829(n) = A244992(a(n)) and vice versa, A244992(n) = A066829(a(n)).
A243503(a(n)) = A243503(n). [Because partition conjugation does not change the partition size.]
A238690(a(n)) = A238690(n). - per Matthew Vandermast's note in that sequence.
A238745(n) = a(A181819(n)) and a(A238745(n)) = A181819(n). - per Matthew Vandermast's note in A238745.
A181815(n) = a(A181820(n)) and a(A181815(n)) = A181820(n). - per Matthew Vandermast's note in A181815.
(End)
a(n) = A181819(A108951(n)). [Prime shadow of the primorial inflation of n] - Antti Karttunen, Apr 29 2022

A048673 Permutation of natural numbers: a(n) = (A003961(n)+1) / 2 [where A003961(n) shifts the prime factorization of n one step towards larger primes].

Original entry on oeis.org

1, 2, 3, 5, 4, 8, 6, 14, 13, 11, 7, 23, 9, 17, 18, 41, 10, 38, 12, 32, 28, 20, 15, 68, 25, 26, 63, 50, 16, 53, 19, 122, 33, 29, 39, 113, 21, 35, 43, 95, 22, 83, 24, 59, 88, 44, 27, 203, 61, 74, 48, 77, 30, 188, 46, 149, 58, 47, 31, 158, 34, 56, 138, 365, 60, 98, 36, 86, 73
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

Inverse of sequence A064216 considered as a permutation of the positive integers. - Howard A. Landman, Sep 25 2001
From Antti Karttunen, Dec 20 2014: (Start)
Permutation of natural numbers obtained by replacing each prime divisor of n with the next prime and mapping the generated odd numbers back to all natural numbers by adding one and then halving.
Note: there is a 7-cycle almost right in the beginning: (6 8 14 17 10 11 7). (See also comments at A249821. This 7-cycle is endlessly copied in permutations like A250249/A250250.)
The only 3-cycle in range 1 .. 402653184 is (2821 3460 5639).
For 1- and 2-cycles, see A245449.
(End)
The first 5-cycle is (1410, 2783, 2451, 2703, 2803). - Robert Israel, Jan 15 2015
From Michel Marcus, Aug 09 2020: (Start)
(5194, 5356, 6149, 8186, 10709), (46048, 51339, 87915, 102673, 137205) and (175811, 200924, 226175, 246397, 267838) are other 5-cycles.
(10242, 20479, 21413, 29245, 30275, 40354, 48241) is another 7-cycle. (End)
From Antti Karttunen, Feb 10 2021: (Start)
Somewhat artificially, also this permutation can be represented as a binary tree. Each child to the left is obtained by multiplying the parent by 3 and subtracting one, while each child to the right is obtained by applying A253888 to the parent:
1
|
................../ \..................
2 3
5......../ \........4 8......../ \........6
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
14 13 11 7 23 9 17 18
41 10 38 12 32 28 20 15 68 25 26 63 50 16 53 19
etc.
Each node's (> 1) parent can be obtained with A253889. Sequences A292243, A292244, A292245 and A292246 are constructed from the residues (mod 3) of the vertices encountered on the path from n to the root (1).
(End)

Examples

			For n = 6, as 6 = 2 * 3 = prime(1) * prime(2), we have a(6) = ((prime(1+1) * prime(2+1))+1) / 2 = ((3 * 5)+1)/2 = 8.
For n = 12, as 12 = 2^2 * 3, we have a(12) = ((3^2 * 5) + 1)/2 = 23.
		

Crossrefs

Inverse: A064216.
Row 1 of A251722, Row 2 of A249822.
One more than A108228, half the terms of A243501.
Fixed points: A048674.
Positions of records: A029744, their values: A246360 (= A007051 interleaved with A057198).
Positions of subrecords: A247283, their values: A247284.
Cf. A246351 (Numbers n such that a(n) < n.)
Cf. A246352 (Numbers n such that a(n) >= n.)
Cf. A246281 (Numbers n such that a(n) <= n.)
Cf. A246282 (Numbers n such that a(n) > n.), A252742 (their char. function)
Cf. A246261 (Numbers n for which a(n) is odd.)
Cf. A246263 (Numbers n for which a(n) is even.)
Cf. A246260 (a(n) reduced modulo 2), A341345 (modulo 3), A341346, A292251 (3-adic valuation), A292252.
Cf. A246342 (Iterates starting from n=12.)
Cf. A246344 (Iterates starting from n=16.)
Cf. A245447 (This permutation "squared", a(a(n)).)
Other permutations whose formulas refer to this sequence: A122111, A243062, A243066, A243500, A243506, A244154, A244319, A245605, A245608, A245610, A245612, A245708, A246265, A246267, A246268, A246363, A249745, A249824, A249826, and also A183209, A254103 that are somewhat similar.
Cf. also prime-shift based binary trees A005940, A163511, A245612 and A244154.
Cf. A253888, A253889, A292243, A292244, A292245 and A292246 for other derived sequences.
Cf. A323893 (Dirichlet inverse), A323894 (sum with it), A336840 (inverse Möbius transform).

Programs

  • Haskell
    a048673 = (`div` 2) . (+ 1) . a045965
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Maple
    f:= proc(n)
    local F,q,t;
      F:= ifactors(n)[2];
      (1 + mul(nextprime(t[1])^t[2], t = F))/2
    end proc:
    seq(f(n),n=1..1000); # Robert Israel, Jan 15 2015
  • Mathematica
    Table[(Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n, {n, 69}] (* Michael De Vlieger, Dec 18 2014, revised Mar 17 2016 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2; \\ Antti Karttunen, Dec 20 2014
    
  • PARI
    A048673(n) = if(1==n,n,if(n%2,A253888(A048673((n-1)/2)),(3*A048673(n/2))-1)); \\ (Not practical, but demonstrates the construction as a binary tree). - Antti Karttunen, Feb 10 2021
    
  • Python
    from sympy import factorint, nextprime, prod
    def a(n):
        f = factorint(n)
        return 1 if n==1 else (1 + prod(nextprime(i)**f[i] for i in f))//2 # Indranil Ghosh, May 09 2017
  • Scheme
    (define (A048673 n) (/ (+ 1 (A003961 n)) 2)) ;; Antti Karttunen, Dec 20 2014
    

Formula

From Antti Karttunen, Dec 20 2014: (Start)
a(1) = 1; for n>1: If n = product_{k>=1} (p_k)^(c_k), then a(n) = (1/2) * (1 + product_{k>=1} (p_{k+1})^(c_k)).
a(n) = (A003961(n)+1) / 2.
a(n) = floor((A045965(n)+1)/2).
Other identities. For all n >= 1:
a(n) = A108228(n)+1.
a(n) = A243501(n)/2.
A108951(n) = A181812(a(n)).
a(A246263(A246268(n))) = 2*n.
As a composition of other permutations involving prime-shift operations:
a(n) = A243506(A122111(n)).
a(n) = A243066(A241909(n)).
a(n) = A241909(A243062(n)).
a(n) = A244154(A156552(n)).
a(n) = A245610(A244319(n)).
a(n) = A227413(A246363(n)).
a(n) = A245612(A243071(n)).
a(n) = A245608(A245605(n)).
a(n) = A245610(A244319(n)).
a(n) = A249745(A249824(n)).
For n >= 2, a(n) = A245708(1+A245605(n-1)).
(End)
From Antti Karttunen, Jan 17 2015: (Start)
We also have the following identities:
a(2n) = 3*a(n) - 1. [Thus a(2n+1) = 0 or 1 when reduced modulo 3. See A341346]
a(3n) = 5*a(n) - 2.
a(4n) = 9*a(n) - 4.
a(5n) = 7*a(n) - 3.
a(6n) = 15*a(n) - 7.
a(7n) = 11*a(n) - 5.
a(8n) = 27*a(n) - 13.
a(9n) = 25*a(n) - 12.
and in general:
a(x*y) = (A003961(x) * a(y)) - a(x) + 1, for all x, y >= 1.
(End)
From Antti Karttunen, Feb 10 2021: (Start)
For n > 1, a(2n) = A016789(a(n)-1), a(2n+1) = A253888(a(n)).
a(2^n) = A007051(n) for all n >= 0. [A property shared with A183209 and A254103].
(End)
a(n) = A003602(A003961(n)). - Antti Karttunen, Apr 20 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/4) * Product_{p prime} ((p^2-p)/(p^2-nextprime(p))) = 1.0319981... , where nextprime is A151800. - Amiram Eldar, Jan 18 2023

Extensions

New name and crossrefs to derived sequences added by Antti Karttunen, Dec 20 2014

A064216 Replace each p^e with prevprime(p)^e in the prime factorization of odd numbers; inverse of sequence A048673 considered as a permutation of the natural numbers.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 11, 6, 13, 17, 10, 19, 9, 8, 23, 29, 14, 15, 31, 22, 37, 41, 12, 43, 25, 26, 47, 21, 34, 53, 59, 20, 33, 61, 38, 67, 71, 18, 35, 73, 16, 79, 39, 46, 83, 55, 58, 51, 89, 28, 97, 101, 30, 103, 107, 62, 109, 57, 44, 65, 49, 74, 27, 113, 82, 127, 85, 24, 131
Offset: 1

Views

Author

Howard A. Landman, Sep 21 2001

Keywords

Comments

a((A003961(n) + 1) / 2) = n and A003961(a(n)) = 2*n - 1 for all n. If the sequence is indexed by odd numbers only, it becomes multiplicative. In this variant sequence, denoted b, even indices don't exist, and we get b(1) = a(1) = 1, b(3) = a(2) = 2, b(5) = 3, b(7) = 5, b(9) = 4 = b(3) * b(3), ... , b(15) = 6 = b(3) * b(5), and so on. This property can also be stated as: a(x) * a(y) = a(((2x - 1) * (2y - 1) + 1) / 2) for x, y > 0. - Reinhard Zumkeller [re-expressed by Peter Munn, May 23 2020]
Not multiplicative in usual sense - but letting m=2n-1=product_j (p_j)^(e_j) then a(n)=a((m+1)/2)=product_j (p_(j-1))^(e_j). - Henry Bottomley, Apr 15 2005
From Antti Karttunen, Jul 25 2016: (Start)
Several permutations that use prime shift operation A064989 in their definition yield a permutation obtained from their odd bisection when composed with this permutation from the right. For example, we have:
A243505(n) = A122111(a(n)).
A243065(n) = A241909(a(n)).
A244153(n) = A156552(a(n)).
A245611(n) = A243071(a(n)).
(End)

Examples

			For n=11, the 11th odd number is 2*11 - 1 = 21 = 3^1 * 7^1. Replacing the primes 3 and 7 with the previous primes 2 and 5 gives 2^1 * 5^1 = 10, so a(11) = 10. - _Michael B. Porter_, Jul 25 2016
		

Crossrefs

Odd bisection of A064989 and A252463.
Row 1 of A251721, Row 2 of A249821.
Cf. A048673 (inverse permutation), A048674 (fixed points).
Cf. A246361 (numbers n such that a(n) <= n.)
Cf. A246362 (numbers n such that a(n) > n.)
Cf. A246371 (numbers n such that a(n) < n.)
Cf. A246372 (numbers n such that a(n) >= n.)
Cf. A246373 (primes p such that a(p) >= p.)
Cf. A246374 (primes p such that a(p) < p.)
Cf. A246343 (iterates starting from n=12.)
Cf. A246345 (iterates starting from n=16.)
Cf. A245448 (this permutation "squared", a(a(n)).)
Cf. A253894, A254044, A254045 (binary width, weight and the number of nonleading zeros in base-2 representation of a(n), respectively).
Cf. A285702, A285703 (phi and sigma applied to a(n).)
Here obviously the variant 2, A151799(n) = A007917(n-1), of the prevprime function is used.
Cf. also A003961, A270430, A270431.

Programs

  • Mathematica
    Table[Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1], {n, 69}] (* Michael De Vlieger, Dec 18 2014, revised Mar 17 2016 *)
  • PARI
    a(n) = {my(f = factor(2*n-1)); for (k=1, #f~, f[k,1] = precprime(f[k,1]-1)); factorback(f);} \\ Michel Marcus, Mar 17 2016
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    def a(n):
        f=factorint(2*n - 1)
        return 1 if n==1 else reduce(mul, [prevprime(i)**f[i] for i in f]) # Indranil Ghosh, May 13 2017
  • Scheme
    (define (A064216 n) (A064989 (- (+ n n) 1))) ;; Antti Karttunen, May 12 2014
    

Formula

a(n) = A064989(2n - 1). - Antti Karttunen, May 12 2014
Sum_{k=1..n} a(k) ~ c * n^2, where c = Product_{p prime > 2} ((p^2-p)/(p^2-q(p))) = 0.6621117868..., where q(p) = prevprime(p) (A151799). - Amiram Eldar, Jan 21 2023

Extensions

More terms from Reinhard Zumkeller, Sep 26 2001
Additional description added by Antti Karttunen, May 12 2014

A241916 a(2^k) = 2^k, and for other numbers, if n = 2^e1 * 3^e2 * 5^e3 * ... p_k^e_k, then a(n) = 2^(e_k - 1) * 3^(e_{k-1}) * ... * p_{k-1}^e2 * p_k^(e1+1). Here p_k is the greatest prime factor of n (A006530), and e_k is its exponent (A071178), and the exponents e1, ..., e_{k-1} >= 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 7, 8, 6, 25, 11, 27, 13, 49, 15, 16, 17, 18, 19, 125, 35, 121, 23, 81, 10, 169, 12, 343, 29, 75, 31, 32, 77, 289, 21, 54, 37, 361, 143, 625, 41, 245, 43, 1331, 45, 529, 47, 243, 14, 50, 221, 2197, 53, 36, 55, 2401, 323, 841, 59, 375, 61, 961, 175, 64
Offset: 1

Views

Author

Antti Karttunen, May 03 2014

Keywords

Comments

For other numbers than the powers of 2 (that are fixed), this permutation reverses the sequence of exponents in the prime factorization of n from the exponent of 2 to that of the largest prime factor, except that the exponents of 2 and the greatest prime factor present are adjusted by one. Note that some of the exponents might be zeros.
Self-inverse permutation of natural numbers, composition of A122111 & A241909 in either order: a(n) = A122111(A241909(n)) = A241909(A122111(n)).
This permutation preserves both bigomega and the (index of) largest prime factor: for all n it holds that A001222(a(n)) = A001222(n) and A006530(a(n)) = A006530(n) [equally: A061395(a(n)) = A061395(n)].
From the above it follows, that this fixes both primes (A000040) and powers of two (A000079), among other numbers.
Even positions from n=4 onward contain only terms of A070003, and the odd positions only the terms of A102750, apart from 1 which is at a(1), and 2 which is at a(2).

Crossrefs

A241912 gives the fixed points; A241913 their complement.
{A000027, A122111, A241909, A241916} form a 4-group.
The sum of prime indices of a(n) is A243503(n).
Even bisection of A358195 = Heinz numbers of rows of A358172.
A112798 lists prime indices, length A001222, sum A056239.

Programs

  • Mathematica
    nn = 65; f[n_] := If[n == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ n]; g[w_List] := Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, w]; Table[If[IntegerQ@ #, n/4, g@ Reverse@(# - Join[{1}, ConstantArray[0, Length@ # - 2], {1}] &@ f@ n)] &@ Log2@ n, {n, 4, 4 nn, 4}] (* Michael De Vlieger, Aug 27 2016 *)
  • PARI
    A209229(n) = (n && !bitand(n,n-1));
    A241916(n) = if(1==A209229(n), n, my(f = factor(2*n), nbf = #f~, igp = primepi(f[nbf,1]), g = f); for(i=1,nbf,g[i,1] = prime(1+igp-primepi(f[i,1]))); factorback(g)/2); \\ Antti Karttunen, Jul 02 2018
    
  • Scheme
    (define (A241916 n) (A122111 (A241909 n)))

Formula

a(1)=1, and for n>1, a(n) = A006530(n) * A137502(n)/2.
a(n) = A122111(A241909(n)) = A241909(A122111(n)).
If 2n has prime factorization Product_{i=1..k} prime(x_i), then a(n) = Product_{i=1..k-1} prime(x_k-x_i+1). The opposite version is A000027, even bisection of A246277. - Gus Wiseman, Dec 28 2022

Extensions

Description clarified by Antti Karttunen, Jul 02 2018

A368900 LCM-transform of Doudna sequence.

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 3, 2, 7, 1, 1, 1, 5, 1, 3, 2, 11, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 2, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 2, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Let's define "property S" for sequences as follows: If s is any sequence of positive natural numbers, normalized to begin with offset 1, then it satisfies the S-property if LCM-transform(s) is equal to the sequence obtained by applying A014963 to sequence s, or in other words, when for all n >= 1, lcm {s(1)..s(n)} / lcm {s(1)..s(n-1)} = A014963(s(n)). This holds if and only if, for all n >= 1, when, either (case A): s(n) is of the form p^k, p prime, then gcd(s(n), lcm {s(1)..s(n-1)}) must be equal to p^(k-1), or (case B): when s(n) is not a prime power, then gcd(s(n), lcm {s(1)..s(n-1)}) must be equal to s(n). Together the cases (A) and (B) reduce to the condition that each prime power should appear in s before any of its multiples do.
Clearly the Doudna-sequence satisfies the property by the way of its construction, as do many of its variants like A356867 (see A369060).
Also, for any base-2 related permutation b that keeps all the numbers of range [2^k, 2^(1+k)[ in the same range, i.e., if for all n >= 1, A000523(b(n)) = A000523(n), then the above property is automatically satisfied.
Furthermore, because in Doudna-sequence no multiple of any term is located on the same row as the term itself (see the tree-illustration in A005940), it follows that any composition of A005940 with any such base-2 related permutation as mentioned above also automatically satisfies the S-property, for example, the permutations A163511, A243353, A253563, A253565, A366260, A366263 and A366275.
Note: Like A005940 itself, also this sequence might be more logical with the starting offset 0 instead of 1, to better align with the underlying mapping from the binary expansion of n to the prime factorization. - Antti Karttunen, Jan 24 2024

Crossrefs

List of LCM-transforms of permutations (permutation given in parentheses):
Cf. A265576 (A064413; note that the EKG sequence permutation does not satisfy the S-property).
In all following cases, the permutation satisfies the S-property:
Cf. A369041 (A003188), A369042 (A006068), A369043 (A193231), A369044 (A057889), A369041 (A054429). [Base-2 related permutations]
Other permutations that have the same property: A303767, (and when used as an offset=1 sequence): A052330.

Programs

  • Mathematica
    nn = 120; Array[Set[{s[#], a[#]}, {#, #}] &, 2]; j = 2;
    Do[If[EvenQ[n],
      Set[s[n], 2 s[n/2]],
      Set[s[n],
        Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &,
          FactorInteger[s[(n + 1)/2]]]]];
      k = LCM[j, s[n]]; a[n] = k/j; j = k, {n, 3, nn}];
    Array[a, nn] (* Michael De Vlieger, Mar 24 2024 *)
  • PARI
    up_to = 16384;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t) };
    v368900 = LCMtransform(vector(up_to,i,A005940(i)));
    A368900(n) = v368900[n];
    
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A209229(n) = (n && !bitand(n,n-1));
    A368900(n)  = if(1==n, 1, my(x=A000265(n-1)); if(A209229(1+x), prime(1+valuation(n-1,2)), 1));

Formula

a(n) = A368901(n) / A368901(n-1) = lcm {1..A005940(n)} / lcm {1..A005940(n-1)}.
a(n) = A005940(n) / gcd(A005940(n), A368901(n-1)).
a(n) = A014963(A005940(n)). [Because A005940 satisfies the property given in the comments]
For n >= 1, Product_{d|n} a(A005941(d)) = n. [Implied by above]
For n >= 1, a(n) = A369030(1+A054429(n-1)).
For n > 1, if n-1 is a number of the form 2^i - 2^j with i >= j, then a(n) = prime(1+j), otherwise a(n) = 1.
Previous Showing 21-30 of 53 results. Next