cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 78 results. Next

A244370 Total number of toothpicks after n-th stage in the toothpick structure of the symmetric representation of sigma in the four quadrants.

Original entry on oeis.org

8, 24, 48, 80, 112, 160, 200, 264, 328, 408, 464, 560, 624, 728, 832, 960, 1040, 1184, 1272, 1432, 1576, 1728, 1832, 2024, 2160, 2336, 2512, 2736
Offset: 1

Views

Author

Omar E. Pol, Jun 26 2014

Keywords

Comments

Partial sums of A244371.
If we use toothpicks of length 1/2, so the area of the central square is equal to 1. The total area of the structure after n-th stage is equal to A024916(n), the sum of all divisors of all positive integers <= n, hence the total area of the n-th set of symmetric regions added at n-th stage is equal to sigma(n) = A000203(n), the sum of divisors of n.
If we use toothpicks of length 1, so the number of cells (and the area) of the central square is equal to 4. The number of cells (and the total area) of the structure after n-th stage is equal to 4*A024916(n) = A243980(n), hence the number of cells (and the total area) of the n-th set of symmetric regions added at n-th stage is equal to 4*A000203(n) = A239050(n).

Examples

			Illustration of the structure after 16 stages (Contains 960 toothpicks):
.
.                 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.                |  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.             _ _| |  _ _ _ _ _ _ _ _ _ _ _ _ _ _  | |_ _
.           _|  _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _  |_
.         _|  _|  _| |  _ _ _ _ _ _ _ _ _ _ _ _  | |_  |_  |_
.        |  _|   |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _|   |_  |
.   _ _ _| |  _ _|     |  _ _ _ _ _ _ _ _ _ _  |     |_ _  | |_ _ _
.  |  _ _ _|_| |      _| |_ _ _ _ _ _ _ _ _ _| |_      | |_|_ _ _  |
.  | | |  _ _ _|    _|_ _|  _ _ _ _ _ _ _ _  |_ _|_    |_ _ _  | | |
.  | | | | |  _ _ _| |  _| |_ _ _ _ _ _ _ _| |_  | |_ _ _  | | | | |
.  | | | | | | |  _ _|_|  _|  _ _ _ _ _ _  |_  |_|_ _  | | | | | | |
.  | | | | | | | | |  _ _|   |_ _ _ _ _ _|   |_ _  | | | | | | | | |
.  | | | | | | | | | | |  _ _|  _ _ _ _  |_ _  | | | | | | | | | | |
.  | | | | | | | | | | | | |  _|_ _ _ _|_  | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | |  _ _  | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |   | | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | | |
.  | | | | | | | | | | | |_|_  |_ _ _ _|  _|_| | | | | | | | | | | |
.  | | | | | | | | | |_|_    |_ _ _ _ _ _|    _|_| | | | | | | | | |
.  | | | | | | | |_|_ _  |_  |_ _ _ _ _ _|  _|  _ _|_| | | | | | | |
.  | | | | | |_|_ _  | |_  |_ _ _ _ _ _ _ _|  _| |  _ _|_| | | | | |
.  | | | |_|_ _    |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_|    _ _|_| | | |
.  | |_|_ _ _  |     |_  |_ _ _ _ _ _ _ _ _ _|  _|     |  _ _ _|_| |
.  |_ _ _  | |_|_      | |_ _ _ _ _ _ _ _ _ _| |      _|_| |  _ _ _|
.        | |_    |_ _  |_ _ _ _ _ _ _ _ _ _ _ _|  _ _|    _| |
.        |_  |_  |_  | |_ _ _ _ _ _ _ _ _ _ _ _| |  _|  _|  _|
.          |_  |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _|  _|
.            |_ _  | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |  _ _|
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
		

Crossrefs

Formula

a(n) = 4*A244362(n) = 8*A244360(n).

Extensions

a(8) corrected and more terms from Omar E. Pol, Oct 18 2014

A239052 Sum of divisors of 4*n-2.

Original entry on oeis.org

3, 12, 18, 24, 39, 36, 42, 72, 54, 60, 96, 72, 93, 120, 90, 96, 144, 144, 114, 168, 126, 132, 234, 144, 171, 216, 162, 216, 240, 180, 186, 312, 252, 204, 288, 216, 222, 372, 288, 240, 363, 252, 324, 360, 270, 336, 384, 360, 294, 468, 306, 312, 576
Offset: 1

Views

Author

Omar E. Pol, Mar 09 2014

Keywords

Comments

Bisection of A062731 (odd part).
a(n) is also the total number of cells in the n-th branch of the second quadrant of the spiral formed by the parts of the symmetric representation of sigma(4n-2). For the quadrants 1, 3, 4 see A112610, A239053, A193553. The spiral has been obtained according to the following way: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> A237270, see example.
We can find the spiral on the terraces of the stepped pyramid described in A244050. - Omar E. Pol, Dec 07 2016

Examples

			Illustration of initial terms:
------------------------------------------------------
.        Branches of the spiral
.        in the second quadrant             n    a(n)
------------------------------------------------------
.
.                  _ _ _ _ _ _ _ _
.                 |  _ _ _ _ _ _ _|         4     24
.                 | |
.             12 _| |
.               |_ _|  _ _ _ _ _ _
.         12 _ _|     |  _ _ _ _ _|         3     18
.      _ _ _| |    9 _| |
.     |  _ _ _|  9 _|_ _|
.     | |      _ _| |      _ _ _ _
.     | |     |  _ _| 12 _|  _ _ _|         2     12
.     | |     | |      _|   |
.     | |     | |     |  _ _|
.     | |     | |     | |    3 _ _
.     | |     | |     | |     |  _|         1      3
.     |_|     |_|     |_|     |_|
.
For n = 4 the sum of divisors of 4*n-2 is 1 + 2 + 7 + 14 = A000203(14) = 24. On the other hand the parts of the symmetric representation of sigma(14) are [12, 12] and the sum of them is 12 + 12 = 24, equaling the sum of divisors of 14, so a(4) = 24.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 4*n - 2]; Array[a, 100] (* Amiram Eldar, Dec 17 2022 *)

Formula

a(n) = A000203(4n-2) = A000203(A016825(n-1)).
a(n) = 3*A008438(n-1). - Joerg Arndt, Mar 09 2014
Sum_{k=1..n} a(k) = (3*Pi^2/8) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 17 2022

A239053 Sum of divisors of 4*n-1.

Original entry on oeis.org

4, 8, 12, 24, 20, 24, 40, 32, 48, 56, 44, 48, 72, 72, 60, 104, 68, 72, 124, 80, 84, 120, 112, 120, 156, 104, 108, 152, 144, 144, 168, 128, 132, 240, 140, 168, 228, 152, 192, 216, 164, 168, 260, 248, 180, 248, 216, 192, 336, 200, 240, 312, 212, 264, 296
Offset: 1

Views

Author

Omar E. Pol, Mar 09 2014

Keywords

Comments

Bisection of A008438.
a(n) is also the total number of cells in the n-th branch of the third quadrant of the spiral formed by the parts of the symmetric representation of sigma(4n-1), see example. For the quadrants 1, 2, 4 see A112610, A239052, A193553. The spiral has been obtained according to the following way: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> A237270.
We can find the spiral (mentioned above) on the terraces of the pyramid described in A244050. - Omar E. Pol, Dec 06 2016

Examples

			Illustration of initial terms:
-----------------------------------------------------
.        Branches of the spiral
.        in the third quadrant             n    a(n)
-----------------------------------------------------
.     _       _       _       _
.    | |     | |     | |     | |
.    | |     | |     | |     |_|_ _
.    | |     | |     | |    2  |_ _|       1      4
.    | |     | |     |_|_     2
.    | |     | |    4    |_
.    | |     |_|_ _        |_ _ _ _
.    | |    6      |_      |_ _ _ _|       2      8
.    |_|_ _ _        |_   4
.   8      | |_ _      |
.          |_    |     |_ _ _ _ _ _
.            |_  |_    |_ _ _ _ _ _|       3     12
.           8  |_ _|  6
.                  |
.                  |_ _ _ _ _ _ _ _
.                  |_ _ _ _ _ _ _ _|       4     24
.                 8
.
For n = 4 the sum of divisors of 4*n-1 is 1 + 3 + 5 + 15 = A000203(15) = 24. On the other hand the parts of the symmetric representation of sigma(15) are [8, 8, 8] and the sum of them is 8 + 8 + 8 = 24, equaling the sum of divisors of 15, so a(4) = 24.
		

Crossrefs

Programs

Formula

a(n) = A000203(4n-1) = A000203(A004767(n-1)).
a(n) = 4*A097723(n-1). - Joerg Arndt, Mar 09 2014
Sum_{k=1..n} a(k) = (Pi^2/4) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 17 2022

A244971 Number of regions in the symmetric representation of sigma(n) on the four quadrants.

Original entry on oeis.org

1, 1, 4, 1, 4, 1, 4, 1, 8, 4, 4, 1, 4, 4, 8, 1, 4, 1, 4, 1, 12, 4, 4, 1, 8, 4, 12, 1, 4, 1, 4, 1, 12, 4, 8, 1, 4, 4, 12, 1, 4, 1, 4, 4, 8, 4, 4, 1, 8, 8, 12, 4, 4, 1, 12, 1, 12, 4, 4, 1, 4, 4, 16, 1, 12, 1, 4, 4, 12, 8, 4, 1, 4, 4, 12, 4, 8, 4, 4, 1, 16, 4, 4, 1, 12, 4, 12, 1, 4, 1
Offset: 1

Views

Author

Omar E. Pol, Jul 08 2014

Keywords

Comments

Partial sums give A244970.
Number of terraces at the n-th level (starting from the top) of the stepped pyramid described in A244050. - Omar E. Pol, Apr 20 2016

Examples

			From _Omar E. Pol_, Apr 20 2016: (Start)
Illustration of the top view of the stepped pyramid with 16 levels:
.                 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.                |  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.             _ _| |  _ _ _ _ _ _ _ _ _ _ _ _ _ _  | |_ _
.           _|  _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _  |_
.         _|  _|  _| |  _ _ _ _ _ _ _ _ _ _ _ _  | |_  |_  |_
.        |  _|   |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _|   |_  |
.   _ _ _| |  _ _|     |  _ _ _ _ _ _ _ _ _ _  |     |_ _  | |_ _ _
.  |  _ _ _|_| |      _| |_ _ _ _ _ _ _ _ _ _| |_      | |_|_ _ _  |
.  | | |  _ _ _|    _|_ _|  _ _ _ _ _ _ _ _  |_ _|_    |_ _ _  | | |
.  | | | | |  _ _ _| |  _| |_ _ _ _ _ _ _ _| |_  | |_ _ _  | | | | |
.  | | | | | | |  _ _|_|  _|  _ _ _ _ _ _  |_  |_|_ _  | | | | | | |
.  | | | | | | | | |  _ _|   |_ _ _ _ _ _|   |_ _  | | | | | | | | |
.  | | | | | | | | | | |  _ _|  _ _ _ _  |_ _  | | | | | | | | | | |
.  | | | | | | | | | | | | |  _|_ _ _ _|_  | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | |  _ _  | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |   | | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | | |
.  | | | | | | | | | | | |_|_  |_ _ _ _|  _|_| | | | | | | | | | | |
.  | | | | | | | | | |_|_    |_ _ _ _ _ _|    _|_| | | | | | | | | |
.  | | | | | | | |_|_ _  |_  |_ _ _ _ _ _|  _|  _ _|_| | | | | | | |
.  | | | | | |_|_ _  | |_  |_ _ _ _ _ _ _ _|  _| |  _ _|_| | | | | |
.  | | | |_|_ _    |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_|    _ _|_| | | |
.  | |_|_ _ _  |     |_  |_ _ _ _ _ _ _ _ _ _|  _|     |  _ _ _|_| |
.  |_ _ _  | |_|_      | |_ _ _ _ _ _ _ _ _ _| |      _|_| |  _ _ _|
.        | |_    |_ _  |_ _ _ _ _ _ _ _ _ _ _ _|  _ _|    _| |
.        |_  |_  |_  | |_ _ _ _ _ _ _ _ _ _ _ _| |  _|  _|  _|
.          |_  |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _|  _|
.            |_ _  | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |  _ _|
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Note that the above diagram contains a hidden pattern, simpler, which emerges from the front view of every corner of the stepped pyramid.
For more information about the hidden pattern see A237593.
(End)
		

Crossrefs

Programs

  • PARI
    lista() = {v = readvec("b237271.txt"); for (i=1, #v, vi = v[i]; if (vi == 1, w = 1, w = 4*(vi-1)); print1(w, ", "););} \\ Michel Marcus, Sep 29 2014

Formula

a(n) = 1, if A237271(n) = 1.
a(n) = 4*(A237271(n) - 1), if A237271(n) > 1.

A279385 Irregular triangle read by rows in which row n lists the numbers k such that the largest Dyck path of the symmetric representation of sigma(k) contains the point (n,n), or row n is 0 if no such k exists.

Original entry on oeis.org

1, 2, 3, 4, 5, 0, 6, 7, 8, 9, 10, 11, 0, 12, 13, 14, 0, 15, 16, 17, 18, 19, 0, 20, 21, 22, 23, 0, 24, 25, 26, 27, 0, 28, 29, 0, 30, 31, 32, 33, 34, 0, 35, 36, 37, 38, 39, 0, 40, 41, 0, 42, 43, 44, 0, 45, 46, 47, 0, 48, 49, 50, 51, 52, 53, 0, 54, 55, 0, 56, 57, 58, 59, 0, 60, 61, 62, 0, 63, 64, 65, 0, 66, 67, 68, 69, 0
Offset: 1

Views

Author

Omar E. Pol, Dec 12 2016

Keywords

Comments

For more information about the mentioned Dyck paths see A237593.

Examples

			n         Triangle begins:
1         1;
2         2, 3;
3         4, 5;
4         0;
5         6, 7;
6         8,
7         9, 10, 11;
8         0;
9         12, 13, 14;
10        0;
11        15;
12        16, 17;
13        18, 19;
14        0;
15        20, 21, 22, 23;
16        0;
...
		

Crossrefs

Positive terms give A000027.
Cf. A259179(n) is the number of positive terms in row n.

Programs

  • Mathematica
    (* last computed value is dropped to avoid a potential under count of crossings *)
    a240542[n_] := Sum[(-1)^(k+1)Ceiling[(n+1)/k-(k+1)/2], {k, 1, Floor[-1/2+1/2 Sqrt[8n+1]]}]
    pathGroups[n_] := Module[{t}, t=Table[{}, a240542[n]]; Map[AppendTo[t[[a240542[#]]], #]&, Range[n]]; Map[If[t[[#]]=={}, t[[#]]={0}]&, Range[Length[t]]]; Most[t]]
    a279385[n_] := Flatten[pathGroups[n]]
    a279385[70] (* sequence *)
    a279385T[n_] := TableForm[pathGroups[n], TableHeadings->{Range[a240542[n]-1], None}]
    a279385T[24] (* display of irregular triangle - Hartmut F. W. Hoft, Feb 02 2022 *)

Extensions

More terms from Omar E. Pol, Jun 20 2018

A280223 Precipice of n: descending by the main diagonal of the pyramid described in A245092, a(n) is the height difference between the n-th level (starting from the top) and the level of the next terrace.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 1, 3, 2, 1, 3, 2, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 1, 3, 2, 1, 2, 1, 2, 1, 3, 2, 1, 1, 4, 3, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 1, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 3, 2, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 5, 4, 3, 2, 1, 3, 2, 1, 1, 3, 2, 1, 4, 3, 2, 1, 2, 1, 1, 5, 4, 3, 2, 1, 2, 1, 1, 1, 4, 3, 2, 1, 4, 3, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Dec 29 2016

Keywords

Comments

The structure of the stepped pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593.
The terraces at the n-th level of the pyramid are also the parts of the symmetric representation of sigma(n).
The stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050.
Note that if a(n) > 1 then the next k terms are the first k positive integers in decreasing order, where k = a(n) - 1.
For more information about the precipices see A277437 and A280295.
a(n) is also the number of numbers >= n whose largest Dyck paths of the symmetric representation of sigma share the same point at the main diagonal of the diagram. For more information see A237593.

Examples

			Descending by the main diagonal of the stepped pyramid, for the levels 9, 10 and 11 we have that the next terrace is in the 12th level, so a(9) = 12 - 9 = 3, a(10) = 12 - 10 = 2, and a(11) = 12 - 11 = 1.
		

Crossrefs

Extensions

More terms from Omar E. Pol, Jan 02 2017

A280940 Irregular triangle read by rows: T(n,k) = number of subparts in the k-th part of the symmetric representation of sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Jan 11 2017

Keywords

Comments

The "subparts" of the symmetric representation of sigma(n) are the regions that arise after the dissection of the symmetric representation of sigma(n) into successive layers of width 1.
The number of subparts in the symmetric representation of sigma(n) equals the number of odd divisors of n.
For more information about "subparts" see A279387, A279388 and A279391.
Note that we can find the symmetric representation of sigma(n) as the terraces at the n-th level (starting from the top) of the stepped pyramid described in A245092.

Examples

			Triangle begins (n = 1..21):
1;
1;
1, 1;
1;
1, 1;
2;
1, 1;
1;
1, 1, 1;
1, 1;
1, 1;
2;
1, 1;
1, 1;
1, 2, 1;
1;
1, 1;
3;
1, 1;
2;
1, 1, 1, 1;
...
For n = 12 we have that the 11th row of triangle A237593 is [6, 3, 1, 1, 1, 1, 3, 6] and the 12th row of the same triangle is [7, 2, 2, 1, 1, 2, 2, 7], so the diagram of the symmetric representation of sigma(12) = 28 is constructed as shown below in Figure 1:
.                          _                                    _
.                         | |                                  | |
.                         | |                                  | |
.                         | |                                  | |
.                         | |                                  | |
.                         | |                                  | |
.                    _ _ _| |                             _ _ _| |
.              28  _|    _ _|                       23  _|  _ _ _|
.                _|     |                             _|  _| |
.               |      _|                            |  _|  _|
.               |  _ _|                              | |_ _|
.    _ _ _ _ _ _| |                       _ _ _ _ _ _| |      5
.   |_ _ _ _ _ _ _|                      |_ _ _ _ _ _ _|
.
.   Figure 1. The symmetric            Figure 2. After the dissection
.   representation of sigma(12)        of the symmetric representation
.   has only one part which            of sigma(12) into layers of
.   contains 28 cells, so              width 1 we can see two "subparts"
.   A237271(12) = 1, and               that contain 23 and 5 cells
.   A000203(12) = 28.                  respectively, so the 12th row of
.                                      this triangle is [2], and the
.                                      row sum is A001227(12) = 2, equaling
.                                      the number of odd divisors of 12.
.
For n = 15 we have that the 14th row of triangle A237593 is [8, 3, 1, 2, 2, 1, 3, 8] and the 15th row of the same triangle is [8, 3, 2, 1, 1, 1, 1, 2, 3, 8], so the diagram of the symmetric representation of sigma(15) = 24 is constructed as shown below in Figure 3:
.                                _                                  _
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                           8   | |                            8   | |
.                               | |                                | |
.                               | |                                | |
.                          _ _ _|_|                           _ _ _|_|
.                   8  _ _| |                          7  _ _| |
.                     |    _|                            |  _ _|
.                    _|  _|                             _| |_|
.                   |_ _|                              |_ _|  1
.           8       |                          8       |
.    _ _ _ _ _ _ _ _|                   _ _ _ _ _ _ _ _|
.   |_ _ _ _ _ _ _ _|                  |_ _ _ _ _ _ _ _|
.
.   Figure 3. The symmetric            Figure 4. After the dissection
.   representation of sigma(15)        of the symmetric representation
.   has three parts of size 8          of sigma(15) into layers of
.   because every part contains        width 1 we can see four "subparts".
.   8 cells, so A237271(15) = 3,       The first and third part contains
.   and A000203(15) = 8+8+8 = 24.      one subpart each. The second part contains
.                                      two subparts, so the 15th row of this
.                                      triangle is [1, 2, 1], and the row
.                                      sum is A001227(15) = 4, equaling the
.                                      number of odd divisors of 15.
.
		

Crossrefs

Row sums give A001227 (number of odd divisors of n).
Row lengths is A237271.

A277437 Square array read by antidiagonals upwards in which T(n,k) is the n-th number j such that, descending by the main diagonal of the pyramid described in A245092, the height difference between the level j (starting from the top) and the level of the next terrace is equal to k.

Original entry on oeis.org

1, 3, 2, 5, 4, 9, 7, 6, 12, 20, 8, 10, 21, 36, 72, 11, 13, 25, 50, 91, 144, 14, 16, 32, 56, 112
Offset: 1

Views

Author

Omar E. Pol, Dec 29 2016

Keywords

Comments

This is a permutation of the natural numbers.
Column k lists the numbers with precipice k. For more information about the precipices see A280223 and A280295.
The structure of the stepped pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593.
The terraces at the m-th level of the pyramid are also the parts of the symmetric representation of sigma(m), m >= 1.
The stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050.
If a number m is in the column k and k > 1 then m + 1 is the column k - 1.
The largest Dyck path of the symmetric representations of next k - 1 positive integers greater than T(n,k) shares the middle point of the largest Dyck path of the symmetric representation of sigma(T(n,k)). For more information see A237593.

Examples

			The corner of the square array begins:
   1,  2,  9, 20, 72, 144,
   3,  4, 12, 36, 91,
   5,  6, 21, 50,
   7, 10, 25,
   8, 13,
  11,
  ...
T(1,6) = 144 because it is the smallest number with precipice 6.
		

Crossrefs

Formula

T(n,1) = A071562(n+1) - 1.

Extensions

a(20)-a(26) from Omar E. Pol, Jan 02 2017

A280295 Smallest number with precipice n. Descending by the main diagonal of the pyramid described in A245092, the height difference between the level a(n) (starting from the top) and the level of the next terrace is equal to n.

Original entry on oeis.org

1, 2, 9, 20, 72, 144
Offset: 1

Views

Author

Omar E. Pol, Dec 31 2016

Keywords

Comments

The structure of the stepped pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593.
The terraces at the k-th level of the pyramid are also the parts of the symmetric representation of sigma(k), k >= 1.
The stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050.
For more information about the precipices see A277437 and A280223.
Is this sequence infinite?

Examples

			a(3) = 9 because descending by the main diagonal of the pyramid, the height difference between the level 9 and the level of the next terrace is equal to 3, and 9 is the smallest number with this property.
		

Crossrefs

Extensions

a(6) from Omar E. Pol, Jan 02 2017

A281005 Numbers n having at least one odd divisor greater than sqrt(2*n).

Original entry on oeis.org

3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 105
Offset: 1

Views

Author

Omar E. Pol, Feb 06 2017

Keywords

Comments

Conjecture 1: also numbers n such that the symmetric representation of sigma(n) has at least one pair of equidistant subparts.
Conjecture 2: the number of pairs of equidistant subparts in the symmetric representation of sigma(k) equals the number of odd divisors of k greater than sqrt(2*k), with k >= 1.
For more information about the subparts see A279387.

Examples

			18 is in the sequence because one of its odd divisors is 9, and 9 is greater than 6, the square root of 2*18.
On the other hand the symmetric representation of sigma(18) has only one part of size 39, which is formed by a central subpart of size 35 and a pair of equidistant subparts [2, 2]. Since there is at least one pair of equidistant subparts, so 18 is in the sequence.
From _Omar E. Pol_, Dec 18 2020: (Start)
The 17th row of triangle A237593 is [9, 4, 2, 1, 1, 1, 1, 2, 4, 9] and the 18th row of the same triangle is [10, 3, 2, 2, 1, 1, 2, 2, 3, 10], so the diagram of the symmetric representation of sigma(18) = 39 is constructed as shown below in figure 1:
.                                     _                                      _
.                                    | |                                    | |
.                                    | |                                    | |
._                                   | |                                    | |
.                                    | |                                    | |
.                                    | |                                    | |
.                                    | |                                    | |
.                                    | |                                    | |
.                                    | |                                    | |
.                             _ _ _ _| |                             _ _ _ _| |
.                            |    _ _ _|                            |  _ _ _ _|
.                           _|   |                                 _| | |
.                         _|  _ _|                               _|  _|_|
.                     _ _|  _|                               _ _|  _|    2
.                    |     |  39                            |  _ _|
.                    |  _ _|                                | |_ _|
.                    | |                                    | |    2
.   _ _ _ _ _ _ _ _ _| |                   _ _ _ _ _ _ _ _ _| |
.  |_ _ _ _ _ _ _ _ _ _|                  |_ _ _ _ _ _ _ _ _ _|
.                                                              35
.
.   Figure 1. The symmetric               Figure 2. After the dissection
.   representation of sigma(18)           of the symmetric representation
.   has one part of size 39.              of sigma(18) into layers of
.                                         width 1 we can see three subparts.
.                                         The first layer has one subpart of
.                                         size 35. The second layer has
.                                         two equidistant subparts of size 2,
.                                         so 18 is in the sequence.
(End)
		

Crossrefs

Programs

  • Magma
    [k:k in [1..110] | not forall{d:d in Divisors(k)| IsEven(d) or d le Sqrt(2*k)}]; // Marius A. Burtea, Jan 15 2020
  • Mathematica
    Select[Range@ 120, Count[Divisors@ #, d_ /; And[OddQ@ d, d > Sqrt[2 #]]] > 0 &] (* Michael De Vlieger, Feb 07 2017 *)
  • PARI
    isok(n) = my(s=sqrt(2*n)); sumdiv(n, d, (d % 2) && (d > s)) > 0; \\ Michel Marcus, Jan 15 2020
    
Previous Showing 31-40 of 78 results. Next