cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A340785 Number of factorizations of 2n into even factors > 1.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 4, 1, 2, 1, 7, 1, 3, 1, 4, 1, 2, 1, 7, 1, 2, 1, 4, 1, 3, 1, 11, 1, 2, 1, 6, 1, 2, 1, 7, 1, 3, 1, 4, 1, 2, 1, 12, 1, 3, 1, 4, 1, 3, 1, 7, 1, 2, 1, 7, 1, 2, 1, 15, 1, 3, 1, 4, 1, 3, 1, 12, 1, 2, 1, 4, 1, 3, 1, 12, 1, 2, 1, 7, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2021

Keywords

Examples

			The a(n) factorizations for n = 2*2, 2*4, 2*8, 2*12, 2*16, 2*32, 2*36, 2*48 are:
  4    8      16       24     32         64           72      96
  2*2  2*4    2*8      4*6    4*8        8*8          2*36    2*48
       2*2*2  4*4      2*12   2*16       2*32         4*18    4*24
              2*2*4    2*2*6  2*2*8      4*16         6*12    6*16
              2*2*2*2         2*4*4      2*4*8        2*6*6   8*12
                              2*2*2*4    4*4*4        2*2*18  2*6*8
                              2*2*2*2*2  2*2*16               4*4*6
                                         2*2*2*8              2*2*24
                                         2*2*4*4              2*4*12
                                         2*2*2*2*4            2*2*4*6
                                         2*2*2*2*2*2          2*2*2*12
                                                              2*2*2*2*6
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The version for partitions is A035363 (A066207).
The odd version is A340101.
The even length case is A340786.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A340653 counts balanced factorizations.
A340831/A340832 count factorizations with odd maximum/minimum.
A316439 counts factorizations by product and length
A340102 counts odd-length factorizations of odd numbers into odd factors.
- Even -
A027187 counts partitions of even length/maximum (A028260/A244990).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts partitions of even length and sum.
A340601 counts partitions of even rank (A340602).
Even bisection of A349906.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Select[#,OddQ]=={}&]],{n,2,100,2}]
  • PARI
    A349906(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&!(d%2), s += A349906(n/d, d))); (s));
    A340785(n) = A349906(2*n); \\ Antti Karttunen, Dec 13 2021

Formula

a(n) = A349906(2*n). - Antti Karttunen, Dec 13 2021

A340605 Heinz numbers of integer partitions of even positive rank.

Original entry on oeis.org

5, 11, 14, 17, 21, 23, 26, 31, 35, 38, 39, 41, 44, 47, 49, 57, 58, 59, 65, 66, 67, 68, 73, 74, 83, 86, 87, 91, 92, 95, 97, 99, 102, 103, 104, 106, 109, 110, 111, 122, 124, 127, 129, 133, 137, 138, 142, 143, 145, 149, 152, 153, 154, 156, 157, 158, 159, 164, 165
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its number of parts. The rank of an empty partition is 0.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of partitions with their Heinz numbers begins:
      5: (3)         57: (8,2)       97: (25)
     11: (5)         58: (10,1)      99: (5,2,2)
     14: (4,1)       59: (17)       102: (7,2,1)
     17: (7)         65: (6,3)      103: (27)
     21: (4,2)       66: (5,2,1)    104: (6,1,1,1)
     23: (9)         67: (19)       106: (16,1)
     26: (6,1)       68: (7,1,1)    109: (29)
     31: (11)        73: (21)       110: (5,3,1)
     35: (4,3)       74: (12,1)     111: (12,2)
     38: (8,1)       83: (23)       122: (18,1)
     39: (6,2)       86: (14,1)     124: (11,1,1)
     41: (13)        87: (10,2)     127: (31)
     44: (5,1,1)     91: (6,4)      129: (14,2)
     47: (15)        92: (9,1,1)    133: (8,4)
     49: (4,4)       95: (8,3)      137: (33)
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
Allowing any positive rank gives A064173 (A340787).
The odd version is counted by A101707 (A340604).
These partitions are counted by A101708.
The not necessarily positive case is counted by A340601 (A340602).
A001222 counts prime indices.
A061395 gives maximum prime index.
A072233 counts partitions by sum and length.
- Rank -
A047993 counts partitions of rank 0 (A106529).
A064173 counts partitions of negative rank (A340788).
A064174 counts partitions of nonnegative rank (A324562).
A064174 (also) counts partitions of nonpositive rank (A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A340692 counts partitions of odd rank (A340603).
- Even -
A027187 counts partitions of even length (A028260).
A027187 (also) counts partitions of even maximum (A244990).
A035363 counts partitions into even parts (A066207).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A339846 counts factorizations of even length.

Programs

  • Mathematica
    rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n];
    Select[Range[100],EvenQ[rk[#]]&&rk[#]>0&]

Formula

A061395(a(n)) - A001222(a(n)) is even and positive.

A344293 5-smooth numbers n whose sum of prime indices A056239(n) is at least twice the number of prime indices A001222(n).

Original entry on oeis.org

1, 3, 5, 9, 10, 15, 25, 27, 30, 45, 50, 75, 81, 90, 100, 125, 135, 150, 225, 243, 250, 270, 300, 375, 405, 450, 500, 625, 675, 729, 750, 810, 900, 1000, 1125, 1215, 1250, 1350, 1500, 1875, 2025, 2187, 2250, 2430, 2500, 2700, 3000, 3125, 3375, 3645, 3750, 4050
Offset: 1

Views

Author

Gus Wiseman, May 16 2021

Keywords

Comments

A number is 5-smooth if its prime divisors are all <= 5.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
       1: {}            125: {3,3,3}
       3: {2}           135: {2,2,2,3}
       5: {3}           150: {1,2,3,3}
       9: {2,2}         225: {2,2,3,3}
      10: {1,3}         243: {2,2,2,2,2}
      15: {2,3}         250: {1,3,3,3}
      25: {3,3}         270: {1,2,2,2,3}
      27: {2,2,2}       300: {1,1,2,3,3}
      30: {1,2,3}       375: {2,3,3,3}
      45: {2,2,3}       405: {2,2,2,2,3}
      50: {1,3,3}       450: {1,2,2,3,3}
      75: {2,3,3}       500: {1,1,3,3,3}
      81: {2,2,2,2}     625: {3,3,3,3}
      90: {1,2,2,3}     675: {2,2,2,3,3}
     100: {1,1,3,3}     729: {2,2,2,2,2,2}
		

Crossrefs

Allowing any number of parts and sum gives A051037, counted by A001399.
These are Heinz numbers of the partitions counted by A266755.
Allowing parts > 5 gives A344291, counted by A110618.
The non-3-smooth case is A344294, counted by A325691.
Requiring the sum of prime indices to be even gives A344295.
A000070 counts non-multigraphical partitions, ranked by A344292.
A025065 counts partitions of n with >= n/2 parts, ranked by A344296.
A035363 counts partitions of n with n/2 parts, ranked by A340387.
A056239 adds up prime indices, row sums of A112798.
A300061 ranks partitions of even numbers, with 5-smooth case A344297.

Programs

  • Mathematica
    Select[Range[1000],PrimeOmega[#]<=Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]/2&&Max@@First/@FactorInteger[#]<=5&]

Formula

Intersection of A051037 and A344291.

A344294 5-smooth but not 3-smooth numbers k such that A056239(k) >= 2*A001222(k).

Original entry on oeis.org

5, 10, 15, 25, 30, 45, 50, 75, 90, 100, 125, 135, 150, 225, 250, 270, 300, 375, 405, 450, 500, 625, 675, 750, 810, 900, 1000, 1125, 1215, 1250, 1350, 1500, 1875, 2025, 2250, 2430, 2500, 2700, 3000, 3125, 3375, 3645, 3750, 4050, 4500, 5000, 5625, 6075, 6250
Offset: 1

Views

Author

Gus Wiseman, May 16 2021

Keywords

Comments

A number is d-smooth iff its prime divisors are all <= d.
A prime index of k is a number m such that prime(m) divides k, and the multiset of prime indices of k is row k of A112798. This row has length A001222(k) and sum A056239(k).

Examples

			The sequence of terms together with their prime indices begins:
       5: {3}           270: {1,2,2,2,3}
      10: {1,3}         300: {1,1,2,3,3}
      15: {2,3}         375: {2,3,3,3}
      25: {3,3}         405: {2,2,2,2,3}
      30: {1,2,3}       450: {1,2,2,3,3}
      45: {2,2,3}       500: {1,1,3,3,3}
      50: {1,3,3}       625: {3,3,3,3}
      75: {2,3,3}       675: {2,2,2,3,3}
      90: {1,2,2,3}     750: {1,2,3,3,3}
     100: {1,1,3,3}     810: {1,2,2,2,2,3}
     125: {3,3,3}       900: {1,1,2,2,3,3}
     135: {2,2,2,3}    1000: {1,1,1,3,3,3}
     150: {1,2,3,3}    1125: {2,2,3,3,3}
     225: {2,2,3,3}    1215: {2,2,2,2,2,3}
     250: {1,3,3,3}    1250: {1,3,3,3,3}
		

Crossrefs

Allowing any number of parts and sum gives A080193, counted by A069905.
The partitions with these Heinz numbers are counted by A325691.
Relaxing the smoothness conditions gives A344291, counted by A110618.
Allowing 3-smoothness gives A344293, counted by A266755.
A025065 counts partitions of n with at least n/2 parts, ranked by A344296.
A035363 counts partitions of n whose length is n/2, ranked by A340387.
A051037 lists 5-smooth numbers (complement: A279622).
A056239 adds up prime indices, row sums of A112798.
A257993 gives the least gap of the partition with Heinz number n.
A300061 lists numbers with even sum of prime indices (5-smooth: A344297).
A342050/A342051 list Heinz numbers of partitions with even/odd least gap.

Programs

  • Mathematica
    Select[Range[1000],PrimeOmega[#]<=Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]/2&&Max@@First/@FactorInteger[#]==5&]

Formula

Intersection of A080193 and A344291.

A344297 Heinz numbers of integer partitions of even numbers with no part greater than 3.

Original entry on oeis.org

1, 3, 4, 9, 10, 12, 16, 25, 27, 30, 36, 40, 48, 64, 75, 81, 90, 100, 108, 120, 144, 160, 192, 225, 243, 250, 256, 270, 300, 324, 360, 400, 432, 480, 576, 625, 640, 675, 729, 750, 768, 810, 900, 972, 1000, 1024, 1080, 1200, 1296, 1440, 1600, 1728, 1875, 1920
Offset: 1

Views

Author

Gus Wiseman, May 16 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
       1: {}                 81: {2,2,2,2}
       3: {2}                90: {1,2,2,3}
       4: {1,1}             100: {1,1,3,3}
       9: {2,2}             108: {1,1,2,2,2}
      10: {1,3}             120: {1,1,1,2,3}
      12: {1,1,2}           144: {1,1,1,1,2,2}
      16: {1,1,1,1}         160: {1,1,1,1,1,3}
      25: {3,3}             192: {1,1,1,1,1,1,2}
      27: {2,2,2}           225: {2,2,3,3}
      30: {1,2,3}           243: {2,2,2,2,2}
      36: {1,1,2,2}         250: {1,3,3,3}
      40: {1,1,1,3}         256: {1,1,1,1,1,1,1,1}
      48: {1,1,1,1,2}       270: {1,2,2,2,3}
      64: {1,1,1,1,1,1}     300: {1,1,2,3,3}
      75: {2,3,3}           324: {1,1,2,2,2,2}
		

Crossrefs

These partitions are counted by A007980.
Including partitions of odd numbers gives A051037 (complement: A279622).
Allowing parts > 3 gives A300061.
A001358 lists semiprimes.
A035363 counts partitions whose length is half their sum, ranked by A340387.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    Select[Range[1000],EvenQ[Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]]&&Max@@First/@FactorInteger[#]<=Prime[3]&]

Formula

Intersection of A051037 and A300061.

A372591 Numbers whose binary weight (A000120) plus bigomega (A001222) is even.

Original entry on oeis.org

2, 6, 7, 8, 9, 10, 11, 13, 15, 19, 24, 28, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 44, 46, 47, 50, 51, 52, 54, 57, 58, 59, 60, 61, 65, 67, 70, 73, 76, 77, 79, 85, 86, 90, 95, 96, 97, 98, 103, 106, 107, 109, 110, 111, 112, 117, 119, 123, 124, 126, 127, 128, 129
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

The odd version is A372590.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
          {2}   2  (1)
        {2,3}   6  (2,1)
      {1,2,3}   7  (4)
          {4}   8  (1,1,1)
        {1,4}   9  (2,2)
        {2,4}  10  (3,1)
      {1,2,4}  11  (5)
      {1,3,4}  13  (6)
    {1,2,3,4}  15  (3,2)
      {1,2,5}  19  (8)
        {4,5}  24  (2,1,1,1)
      {3,4,5}  28  (4,1,1)
  {1,2,3,4,5}  31  (11)
          {6}  32  (1,1,1,1,1)
        {1,6}  33  (5,2)
        {2,6}  34  (7,1)
        {3,6}  36  (2,2,1,1)
      {1,3,6}  37  (12)
    {1,2,3,6}  39  (6,2)
        {4,6}  40  (3,1,1,1)
      {1,4,6}  41  (13)
      {2,4,6}  42  (4,2,1)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372587, complement A372586.
For minimum (A372437) we have A372440, complement A372439.
Positions of even terms in A372441, zeros A071814.
For maximum (A372442, zeros A372436) we have A372589, complement A372588.
The complement is A372590.
For just binary indices:
- length: A001969, complement A000069
- sum: A158704, complement A158705
- minimum: A036554, complement A003159
- maximum: A053754, complement A053738
For just prime indices:
- length: A026424 A028260 (count A027187), complement (count A027193)
- sum: A300061 (count A058696), complement A300063 (count A058695)
- minimum: A340933 (count A026805), complement A340932 (count A026804)
- maximum: A244990 (count A027187), complement A244991 (count A027193)
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031215 lists even-indexed primes, odd A031368.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[100],EvenQ[DigitCount[#,2,1]+PrimeOmega[#]]&]

A340933 Numbers whose least prime index is even. Heinz numbers of integer partitions whose last part is even.

Original entry on oeis.org

3, 7, 9, 13, 15, 19, 21, 27, 29, 33, 37, 39, 43, 45, 49, 51, 53, 57, 61, 63, 69, 71, 75, 77, 79, 81, 87, 89, 91, 93, 99, 101, 105, 107, 111, 113, 117, 119, 123, 129, 131, 133, 135, 139, 141, 147, 151, 153, 159, 161, 163, 165, 169, 171, 173, 177, 181, 183
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. 1 has no prime indices so is not counted.

Examples

			The sequence of terms together with their prime indices begins:
      3: {2}         51: {2,7}         99: {2,2,5}
      7: {4}         53: {16}         101: {26}
      9: {2,2}       57: {2,8}        105: {2,3,4}
     13: {6}         61: {18}         107: {28}
     15: {2,3}       63: {2,2,4}      111: {2,12}
     19: {8}         69: {2,9}        113: {30}
     21: {2,4}       71: {20}         117: {2,2,6}
     27: {2,2,2}     75: {2,3,3}      119: {4,7}
     29: {10}        77: {4,5}        123: {2,13}
     33: {2,5}       79: {22}         129: {2,14}
     37: {12}        81: {2,2,2,2}    131: {32}
     39: {2,6}       87: {2,10}       133: {4,8}
     43: {14}        89: {24}         135: {2,2,2,3}
     45: {2,2,3}     91: {4,6}        139: {34}
     49: {4,4}       93: {2,11}       141: {2,15}
		

Crossrefs

These partitions are counted by A026805.
Looking at length or at maximum gives A028260/A244990, counted by A027187.
If all prime indices are even we get A066207, counted by A035363.
The complement is {1} \/ A340932, counted by A026804.
A001222 counts prime factors.
A005843 lists even numbers.
A031215 lists even-indexed primes.
A055396 selects least prime index.
A056239 adds up prime indices.
A058695 counts partitions of even numbers, ranked by A300061.
A061395 selects greatest prime index.
A112798 lists the prime indices of each positive integer.

Programs

  • Mathematica
    Select[Range[2,100],EvenQ[PrimePi[FactorInteger[#][[1,1]]]]&]

Formula

A055396(a(n)) belongs to A005843.
Closed under multiplication.

A372588 Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is odd.

Original entry on oeis.org

2, 6, 7, 8, 10, 11, 15, 18, 19, 21, 24, 26, 27, 28, 29, 32, 33, 34, 40, 41, 44, 45, 46, 47, 50, 51, 55, 59, 60, 62, 65, 70, 71, 72, 74, 76, 78, 79, 81, 84, 86, 87, 89, 91, 95, 96, 98, 101, 104, 105, 106, 107, 108, 111, 112, 113, 114, 116, 117, 122, 126, 128
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The even version is A372589.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
        {2}   2  (1)
      {2,3}   6  (2,1)
    {1,2,3}   7  (4)
        {4}   8  (1,1,1)
      {2,4}  10  (3,1)
    {1,2,4}  11  (5)
  {1,2,3,4}  15  (3,2)
      {2,5}  18  (2,2,1)
    {1,2,5}  19  (8)
    {1,3,5}  21  (4,2)
      {4,5}  24  (2,1,1,1)
    {2,4,5}  26  (6,1)
  {1,2,4,5}  27  (2,2,2)
    {3,4,5}  28  (4,1,1)
  {1,3,4,5}  29  (10)
        {6}  32  (1,1,1,1,1)
      {1,6}  33  (5,2)
      {2,6}  34  (7,1)
      {4,6}  40  (3,1,1,1)
    {1,4,6}  41  (13)
    {3,4,6}  44  (5,1,1)
  {1,3,4,6}  45  (3,2,2)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372586.
For minimum (A372437) we have A372439, complement A372440.
For length (A372441, zeros A071814) we have A372590, complement A372591.
Positions of odd terms in A372442, zeros A372436.
The complement is A372589.
For just binary indices:
- length: A000069, complement A001969
- sum: A158705, complement A158704
- minimum: A003159, complement A036554
- maximum: A053738, complement A053754
For just prime indices:
- length: A026424 (count A027193), complement A028260 (count A027187)
- sum: A300063 (count A058695), complement A300061 (count A058696)
- minimum: A340932 (count A026804), complement A340933 (count A026805)
- maximum: A244991 (count A027193), complement A244990 (count A027187)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[2,100],OddQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]

Formula

Numbers k such that A070939(k) + A061395(k) is odd.

A340786 Number of factorizations of 4n into an even number of even factors > 1.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 6, 1, 3, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 4, 1, 7, 2, 2, 2, 7, 1, 2, 2, 6, 1, 4, 1, 4, 3, 2, 1, 10, 2, 3, 2, 4, 1, 4, 2, 6, 2, 2, 1, 8, 1, 2, 3, 12, 2, 4, 1, 4, 2, 4, 1, 10, 1, 2, 3, 4, 2, 4, 1, 10, 3, 2, 1, 8, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2021

Keywords

Examples

			The a(n) factorizations for n = 6, 12, 24, 36, 60, 80, 500:
  4*6   6*8      2*48      2*72      4*60      4*80          40*50
  2*12  2*24     4*24      4*36      6*40      8*40          4*500
        4*12     6*16      6*24      8*30      10*32         8*250
        2*2*2*6  8*12      8*18      10*24     16*20         10*200
                 2*2*4*6   12*12     12*20     2*160         20*100
                 2*2*2*12  2*2*6*6   2*120     2*2*2*40      2*1000
                           2*2*2*18  2*2*2*30  2*2*4*20      2*2*10*50
                                     2*2*6*10  2*2*8*10      2*2*2*250
                                               2*4*4*10      2*10*10*10
                                               2*2*2*2*2*10
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
Positions of ones are 1 and A000040, or A008578.
A version for partitions is A027187 (A028260).
Allowing odd length gives A108501 (bisection of A340785).
Allowing odd factors gives A339846.
An odd version is A340102.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A316439 counts factorizations by product and length.
A340101 counts factorizations into odd factors.
A340653 counts balanced factorizations.
A340831/A340832 count factorizations with odd maximum/minimum.
- Even -
A027187 counts partitions of even maximum (A244990).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts partitions of even length and sum (A340784).
A340601 counts partitions of even rank (A340602).

Programs

  • Maple
    g:= proc(n, m, p)
     option remember;
     local F,r,x,i;
     # number of factorizations of n into even factors > m with number of factors == p (mod 2)
     if n = 1 then if p = 0 then return 1 else return 0 fi fi;
     if m > n  or n::odd then return 0 fi;
     F:= sort(convert(select(t -> t > m and t::even, numtheory:-divisors(n)),list));
     r:= 0;
     for x in F do
       for i from 1 while n mod x^i = 0 do
         r:= r + procname(n/x^i, x, (p+i) mod 2)
     od od;
     r
    end proc:
    f:= n -> g(4*n, 1, 0):
    map(f, [$1..100]); # Robert Israel, Mar 16 2023
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[4n],EvenQ[Length[#]]&&Select[#,OddQ]=={}&]],{n,100}]
  • PARI
    A340786aux(n, m=n, p=0) = if(1==n, (0==p), my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&!(d%2), s += A340786aux(n/d, d, 1-p))); (s));
    A340786(n) = A340786aux(4*n); \\ Antti Karttunen, Apr 14 2022

A372586 Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is odd.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 12, 15, 16, 17, 20, 21, 29, 32, 36, 42, 43, 45, 46, 47, 48, 51, 53, 54, 55, 59, 60, 61, 63, 64, 65, 66, 67, 68, 71, 73, 78, 79, 80, 81, 84, 89, 91, 93, 94, 95, 97, 99, 101, 105, 110, 111, 113, 114, 115, 116, 118, 119, 121, 122, 125, 127
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The even version is A372587.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
            {1}   1  ()
            {2}   2  (1)
          {1,2}   3  (2)
            {3}   4  (1,1)
          {1,3}   5  (3)
            {4}   8  (1,1,1)
          {1,4}   9  (2,2)
          {3,4}  12  (2,1,1)
      {1,2,3,4}  15  (3,2)
            {5}  16  (1,1,1,1)
          {1,5}  17  (7)
          {3,5}  20  (3,1,1)
        {1,3,5}  21  (4,2)
      {1,3,4,5}  29  (10)
            {6}  32  (1,1,1,1,1)
          {3,6}  36  (2,2,1,1)
        {2,4,6}  42  (4,2,1)
      {1,2,4,6}  43  (14)
      {1,3,4,6}  45  (3,2,2)
      {2,3,4,6}  46  (9,1)
    {1,2,3,4,6}  47  (15)
          {5,6}  48  (2,1,1,1,1)
		

Crossrefs

Positions of odd terms in A372428, zeros A372427.
For minimum (A372437) we have A372439, complement A372440.
For length (A372441, zeros A071814) we have A372590, complement A372591.
For maximum (A372442, zeros A372436) we have A372588, complement A372589.
The complement is A372587.
For just binary indices:
- length: A000069, complement A001969
- sum: A158705, complement A158704
- minimum: A003159, complement A036554
- maximum: A053738, complement A053754
For just prime indices:
- length: A026424 (count A027193), complement A028260 (count A027187)
- sum: A300063 (count A058695), complement A300061 (count A058696)
- minimum: A340932 (count A026804), complement A340933 (count A026805)
- maximum: A244991 (count A027193), complement A244990 (count A027187)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],OddQ[Total[bix[#]]+Total[prix[#]]]&]

Formula

Numbers k such that A029931(k) + A056239(k) is odd.
Previous Showing 21-30 of 38 results. Next