cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A052913 a(n+2) = 5*a(n+1) - 2*a(n), with a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 18, 82, 374, 1706, 7782, 35498, 161926, 738634, 3369318, 15369322, 70107974, 319801226, 1458790182, 6654348458, 30354161926, 138462112714, 631602239718, 2881086973162, 13142230386374, 59948977985546, 273460429154982, 1247404189803818, 5690100090709126
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Main diagonal of the array: m(1,j)=3^(j-1), m(i,1)=1; m(i,j) = m(i-1,j) + m(i,j-1): 1 3 9 27 81 ... / 1 4 13 40 ... / 1 5 18 58 ... / 1 6 24 82 ... - Benoit Cloitre, Aug 05 2002
a(n) is also the number of 3 X n matrices of integers for which the upper-left hand corner is a 1, the rows and columns are weakly increasing, and two adjacent entries differ by at most 1. - Richard Stanley, Jun 06 2010
a(n) is the number of compositions of n when there are 4 types of 1 and 2 types of other natural numbers. - Milan Janjic, Aug 13 2010
If a Stern's sequence based enumeration system of positive irreducible fractions is considered (for example, A007305/A047679, or A162909/A162910, or A071766/A229742, or A245325/A245326, ...), and if it is organized by blocks or levels (n) with 2^n terms (n>=0), and the products numerator*denominator, term by term, are summed at each level n, then the resulting sequence of integers is a(n). - Yosu Yurramendi, May 23 2015
Number of 1’s in the substitution system {0 -> 110, 1 -> 11110} at step n from initial string "1" (1 -> 11110 -> 11110111101111011110110 -> ...) . - Ilya Gutkovskiy, Apr 10 2017

Crossrefs

Cf. A007482 (inverse binomial transform).

Programs

  • GAP
    a:=[1,4];; for n in [3..30] do a[n]:=5*a[n-1]-2*a[n-2]; od; a; # G. C. Greubel, Oct 16 2019
    
  • Magma
    I:=[1,4]; [n le 2 select I[n] else 5*Self(n-1)-2*Self(n-2): n in [1..35]]; // Vincenzo Librandi, May 24 2015
    
  • Magma
    R:=PowerSeriesRing(Integers(), 25); Coefficients(R!((1-x)/(1-5*x+2*x^2))); // Marius A. Burtea, Oct 16 2019
  • Maple
    spec := [S,{S=Sequence(Union(Prod(Sequence(Z),Union(Z,Z)),Z,Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(coeff(series((1-x)/(1-5*x+2*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 16 2019
  • Mathematica
    Transpose[NestList[{Last[#],5Last[#]-2First[#]}&, {1,4},20]][[1]] (* Harvey P. Dale, Mar 12 2011 *)
    LinearRecurrence[{5, -2}, {1, 4}, 25] (* Jean-François Alcover, Jan 08 2019 *)
  • PARI
    Vec((1-x)/(1-5*x+2*x^2) + O(x^30)) \\ Michel Marcus, Mar 05 2015
    
  • Sage
    def A052913_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-x)/(1-5*x+2*x^2)).list()
    A052913_list(30) # G. C. Greubel, Oct 16 2019
    

Formula

G.f.: (1-x)/(1-5*x+2*x^2).
a(n) = Sum_{alpha=RootOf(1 - 5*z + 2*z^2)} (1/17)*(3+alpha)*alpha^(-1-n).
a(n) = ((17+3*sqrt(17))/34)*((5+sqrt(17))/2)^n + ((17-3*sqrt(17))/34)*((5-sqrt(17))/2)^n. - N. J. A. Sloane, Jun 03 2002
a(n) = A107839(n) - A107839(n-1). - R. J. Mathar, May 21 2015
a(n) = 2*A020698(n-1), n>1. - R. J. Mathar, Nov 23 2015
E.g.f.: (1/17)*exp(5*x/2)*(17*cosh(sqrt(17)*x/2) + 3*sqrt(17)*sinh(sqrt(17)*x/2)). - Stefano Spezia, Oct 16 2019
a(n) = 3*A107839(n-1) + (-1)^n*A152594(n) with A107839(-1) = 0. - Klaus Purath, Jul 29 2020

Extensions

Typo in definition corrected by Bruno Berselli, Jun 07 2010

A180201 Inverse permutation to A180200.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 7, 11, 10, 8, 9, 13, 12, 14, 15, 23, 22, 20, 21, 17, 16, 18, 19, 27, 26, 24, 25, 29, 28, 30, 31, 47, 46, 44, 45, 41, 40, 42, 43, 35, 34, 32, 33, 37, 36, 38, 39, 55, 54, 52, 53, 49, 48, 50, 51, 59, 58, 56, 57, 61, 60, 62, 63, 95, 94, 92, 93, 89, 88, 90, 91, 83
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 15 2010

Keywords

Comments

A180199(n) = a(a(n));
a(A180198(n)) = A180198(a(n)) = A180200(n);
a(A075427(n)) = A075427(n).
This permutation transforms the enumeration system of positive irreducible fractions A245325/A245326 into the enumeration system A007305/A047679 (Stern-Brocot), and enumeration system A071766/A229742 (HCS) into A162909/A162910 (Bird). - Yosu Yurramendi, Jun 09 2015

Programs

  • R
    #
    maxn <- 63 # by choice
    a <- 1
    for(n in 1:maxn){
    a[2*n  ] <- 2*a[n] + (n%%2 == 0)
    a[2*n+1] <- 2*a[n] + (n%%2 != 0)}
    a <- c(0, a)
    # Yosu Yurramendi, May 23 2020

Formula

a(n) = A233280(A258746(n)) = A117120(A233280(n)), n > 0. - Yosu Yurramendi, Apr 10 2017 [Corrected by Yosu Yurramendi, Mar 14 2025]
a(0) = 0, a(1) = 1, for n > 0 a(2*n) = 2*a(n) + [n even], a(2*n + 1) = 2*a(n) + [n odd]. - Yosu Yurramendi, May 23 2020
From Alan Michael Gómez Calderón, Mar 04 2025: (Start)
a(n) = A054429(n) XOR floor(n/2) for n > 0.
a(n) = A054429(A003188(n)) for n > 0. (End)
a(n) = A154436(A054429(n)), n > 0. - Yosu Yurramendi, Mar 11 2025
Previous Showing 11-12 of 12 results.