1, 1, 0, 2, 1, 0, 4, 3, 0, 0, 8, 8, 1, 0, 0, 16, 20, 5, 0, 0, 0, 32, 48, 18, 1, 0, 0, 0, 64, 112, 56, 7, 0, 0, 0, 0, 128, 256, 160, 32, 1, 0, 0, 0, 0, 256, 576, 432, 120, 9, 0, 0, 0, 0, 0, 512, 1280, 1120, 400, 50, 1, 0, 0, 0, 0, 0
Offset: 0
A093375
Array T(m,n) read by ascending antidiagonals: T(m,n) = m*binomial(n+m-2, n-1) for m, n >= 1.
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 4, 9, 6, 1, 5, 16, 18, 8, 1, 6, 25, 40, 30, 10, 1, 7, 36, 75, 80, 45, 12, 1, 8, 49, 126, 175, 140, 63, 14, 1, 9, 64, 196, 336, 350, 224, 84, 16, 1, 10, 81, 288, 588, 756, 630, 336, 108, 18, 1, 11, 100, 405, 960, 1470, 1512, 1050, 480, 135, 20, 1, 12
Offset: 1
Array T(m,n) (with rows m >= 1 and columns n >= 1) begins as follows:
1 1 1 1 1 1 ...
2 4 6 8 10 12 ...
3 9 18 30 45 63 ...
4 16 40 80 140 224 ...
5 25 75 175 350 630 ...
...
Triangle S(n,k) = T(n-k+1, k+1) begins
.n\k.|....0....1....2....3....4....5....6
= = = = = = = = = = = = = = = = = = = = =
..0..|....1
..1..|....2....1
..2..|....3....4....1
..3..|....4....9....6....1
..4..|....5...16...18....8....1
..5..|....6...25...40...30...10....1
..6..|....7...36...75...80...45...12....1
...
-
nmax:=14;; T:=List([1..nmax],n->List([1..nmax],k->k*Binomial(n+k-2,n-1)));;
b:=List([2..nmax],n->OrderedPartitions(n,2));;
a:=Flat(List([1..Length(b)],i->List([1..Length(b[i])],j->T[b[i][j][1]][b[i][j][2]]))); # Muniru A Asiru, Aug 07 2018
-
nmax = 10;
T = Transpose[CoefficientList[# + O[z]^(nmax+1), z]& /@ CoefficientList[(1 - x z)/(1 - z - x z)^2 + O[x]^(nmax+1), x]];
row[n_] := T[[n+1, 1 ;; n+1]];
Table[row[n], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
-
# uses[riordan_array from A256893]
riordan_array((1+x)*exp(x), x, 8, exp=true) # Peter Luschny, Nov 02 2019
A111593
Triangle of tanh numbers.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, -2, 0, 1, 0, 0, -8, 0, 1, 0, 16, 0, -20, 0, 1, 0, 0, 136, 0, -40, 0, 1, 0, -272, 0, 616, 0, -70, 0, 1, 0, 0, -3968, 0, 2016, 0, -112, 0, 1, 0, 7936, 0, -28160, 0, 5376, 0, -168, 0, 1, 0, 0, 176896, 0, -135680, 0, 12432, 0, -240, 0, 1, 0, -353792, 0, 1805056, 0, -508640, 0, 25872
Offset: 0
Binomial convolution of row polynomials: p(3,x)= -2*x+x^3; p(2,x)=x^2, p(1,x)= x, p(0,x)= 1, together with those from A060081:
s(3,x)= -5*x+x^3; s(2,x)= -1+x^2, s(1,x)= x, s(0,x)= 1;
therefore -5*(x+y)+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = -2*y+y^3 + 3*x*y^2 + 3*(-1+x^2)*y + (-5*x+x^3).
From _Paul Barry_, May 30 2010: (Start)
Triangle begins:
1;
0, 1;
0, 0, 1;
0, -2, 0, 1;
0, 0, -8, 0, 1;
0, 16, 0, -20, 0, 1;
0, 0, 136, 0, -40, 0, 1;
0, -272, 0, 616, 0, -70, 0, 1;
0, 0, -3968, 0, 2016, 0, -112, 0, 1;
Production matrix begins:
0, 1;
0, 0, 1;
0, -2, 0, 1;
0, 0, -6, 0, 1;
0, 0, 0, -12, 0, 1;
0, 0, 0, 0, -20, 0, 1;
0, 0, 0, 0, 0, -30, 0, 1;
0, 0, 0, 0, 0, 0, -42, 0, 1;
0, 0, 0, 0, 0, 0, 0, -56, 0, 1; (End)
-
# The function BellMatrix is defined in A264428.
BellMatrix(n -> 2^(n+1)*euler(n+1, 1), 9); # Peter Luschny, Jan 26 2016
-
t[0, 0] = 1; t[n_, m_] := Sum[ Binomial[k+m-1, m-1]*(k+m)!*(-1)^(k)*2^(n-k-m)*StirlingS2[n, k+m], {k, 0, n-m}]/m!; Table[t[n, m], {n, 0, 11}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Vladimir Kruchinin *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[2^(#+1)*EulerE[#+1, 1]&, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
T(n,m):=if n=0 and m=0 then 1 else sum(binomial(k+m-1,m-1)*(k+m)!*(-1)^(k)*2^(n-k-m)*stirling2(n,k+m),k,0,n-m)/m!; /* Vladimir Kruchinin, Jun 09 2011 */
-
# uses[riordan_array from A256893]
riordan_array(1, tanh(x), 9, exp=true) # Peter Luschny, Apr 19 2015
A110165
Riordan array (1/sqrt(1-6x+5x^2),(1-3x-sqrt(1-6x+5x^2))/(2x)).
Original entry on oeis.org
1, 3, 1, 11, 6, 1, 45, 30, 9, 1, 195, 144, 58, 12, 1, 873, 685, 330, 95, 15, 1, 3989, 3258, 1770, 630, 141, 18, 1, 18483, 15533, 9198, 3801, 1071, 196, 21, 1, 86515, 74280, 46928, 21672, 7210, 1680, 260, 24, 1, 408105, 356283, 236736, 119154, 44982, 12510, 2484, 333, 27, 1
Offset: 0
Rows begin
1;
3, 1;
11, 6, 1;
45, 30, 9, 1;
195, 144, 58, 12, 1;
873, 685, 330, 95, 15, 1;
Production array begins:
3, 1;
2, 3, 1;
0, 1, 3, 1;
0, 0, 1, 3, 1;
0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 0, 1, 3, 1;
... - _Philippe Deléham_, Feb 08 2014
-
seq(seq( coeff((x^2 + 3*x + 1)^n, x, n-k), k = 0..n ), n = 0..10); # Peter Bala, Jan 09 2022
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1/Sqrt[1-6#+5#^2]&, (1-3#-Sqrt[1-6#+5#^2])/(2#)&, 10] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
A122896
Riordan array (1, (1 - x - sqrt(1 - 2*x - 3*x^2)) / (2*x)), a Riordan array for directed animals. Triangle read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 5, 3, 1, 0, 9, 12, 9, 4, 1, 0, 21, 30, 25, 14, 5, 1, 0, 51, 76, 69, 44, 20, 6, 1, 0, 127, 196, 189, 133, 70, 27, 7, 1, 0, 323, 512, 518, 392, 230, 104, 35, 8, 1, 0, 835, 1353, 1422, 1140, 726, 369, 147, 44, 9, 1
Offset: 0
Triangle begins:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 2, 2, 1;
[4] 0, 4, 5, 3, 1;
[5] 0, 9, 12, 9, 4, 1;
[6] 0, 21, 30, 25, 14, 5, 1;
[7] 0, 51, 76, 69, 44, 20, 6, 1;
[8] 0, 127, 196, 189, 133, 70, 27, 7, 1;
[9] 0, 323, 512, 518, 392, 230, 104, 35, 8, 1.
Row sums are
A005773, number of directed animals of size n.
-
T := proc(n,k) option remember;
if k=0 then return 0^n fi; if k>n then return 0 fi;
T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) end:
for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, Aug 17 2016
# Uses function PMatrix from A357368.
PMatrix(10, n -> simplify(hypergeom([1 -n/2, -n/2+1/2], [2], 4))); # Peter Luschny, Oct 08 2022
-
T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0, ] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
-
# uses[riordan_array from A256893]
riordan_array(1, (1-x-sqrt(1-2*x-3*x^2))/(2*x), 11) # Peter Luschny, Aug 17 2016
A064580
Triangle associated with rooted trees with a degree constraint (A036765).
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 5, 5, 1, 4, 9, 14, 13, 1, 5, 14, 28, 40, 36, 1, 6, 20, 48, 87, 118, 104, 1, 7, 27, 75, 161, 273, 357, 309, 1, 8, 35, 110, 270, 536, 866, 1100, 939, 1, 9, 44, 154, 423, 951, 1782, 2772, 3441, 2905, 1, 10, 54, 208, 630, 1572, 3310, 5928, 8946, 10900, 9118
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 2;
1, 3, 5, 5;
1, 4, 9, 14, 13;
1, 5, 14, 28, 40, 36;
...
-
a[n_, k_] /; 0 <= k <= n = a[n, k] = a[n - 1, k] + a[n - 1, k - 1] + a[n - 1, k - 2] + a[n - 1, k - 3]; a[0, 0] = 1; a[, ] = 0;
Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018 *)
-
# uses[riordan_array from A256893]
M = riordan_array(1, x/(1+x+x^2+x^3), 12).inverse()
for m in M[1:]:
print([r for r in reversed(list(m)) if r != 0]) # Peter Luschny, Aug 17 2016
A104578
A Padovan convolution triangle.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 3, 0, 1, 2, 3, 3, 4, 0, 1, 2, 6, 6, 4, 5, 0, 1, 3, 7, 12, 10, 5, 6, 0, 1, 4, 12, 16, 20, 15, 6, 7, 0, 1, 5, 17, 30, 30, 30, 21, 7, 8, 0, 1, 7, 24, 45, 60, 50, 42, 28, 8, 9, 0, 1, 9, 36, 70, 95, 105, 77, 56, 36, 9, 10, 0, 1, 12, 50, 111, 160, 175, 168, 112, 72
Offset: 0
From _Wolfdieter Lang_, Oct 30 2018: (Start)
The triangle T begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
--------------------------------------
0: 1
1: 0 1
2: 1 0 1
3: 1 2 0 1
4: 1 2 3 0 1
5: 2 3 3 4 0 1
6: 2 6 6 4 5 0 1
7: 3 7 12 10 5 6 0 1
8: 4 12 16 20 15 6 7 0 1
9: 5 17 30 30 30 21 7 8 0 1
10: 7 24 45 60 50 42 28 8 9 0 1
...
Cayley-Hamilton formula for the tribonacci Q-matrix TQ(x) =[[x,1,1], [1,0,0], [0,1,0]] with Det(TQ) = +1, sigma(3, 2) = -1, and Tr(TQ) = x. For n = 3: TQ(x)^3 = R(1, x)*TQ(x)^2 + (R(0 x) + R(-1, x))*TQ(x) + R(0, x)*1_3 = x*TQ(x)^2 + TQ(x) + 1_3. For x = 1 see also A058265 (powers of the tribonacci constant).
Recurrence: T(6, 2) = T(5, 1) + T(4, 2) + T(3, 2) = 3 + 3 + 0 = 6.
Z- and A- recurrence with A319202 = {1, 0, 1, 1, -1, -3, 0, ...}:
T(5, 0) = 0*1 + 1*2 + 1*3 + (-1)*0 + (-3)*1 = 2; T(5,2) = 1*2 + 0*3 + 1*0 + 1*1 = 3.
Boas-Buck type recurrence with b = {0, 2, 3, ...}: T(5, 2) = ((1+2)/(5-2)) * (3*1 + 2*0 + 0*3) = 1*3 = 3.
(End)
-
T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + T[n-2, k] + T[n-3, k]; T[0, 0] = 1; T[, ] = 0; Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* Jean-François Alcover, Jun 11 2019 *)
-
# uses[riordan_array from A256893]
riordan_array( 1/(1 - x^2 - x^3), x/(1 - x^2 - x^3), 8) # Peter Luschny, Nov 09 2018
A109267
Riordan array (1/(1 - x*c(x) - x^2*c(x)^2), x*c(x)) where c(x) is the g.f. of A000108.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 9, 6, 3, 1, 29, 19, 10, 4, 1, 97, 63, 34, 15, 5, 1, 333, 215, 118, 55, 21, 6, 1, 1165, 749, 416, 201, 83, 28, 7, 1, 4135, 2650, 1485, 736, 320, 119, 36, 8, 1, 14845, 9490, 5355, 2705, 1220, 484, 164, 45, 9, 1, 53791, 34318, 19473, 9983, 4628, 1923, 703, 219, 55, 10, 1
Offset: 0
Rows begin
1;
1, 1;
3, 2, 1;
9, 6, 3, 1;
29, 19, 10, 4, 1;
97, 63, 34, 15, 5, 1;
-
Flat(List([0..10],n->List([0..n],k->Sum([0..n-k],i->(Fibonacci(i+1)-2*Fibonacci(i))*Binomial(2*n-k-i,n))))); # Muniru A Asiru, Feb 19 2018
-
A109267 := (n,k) -> add(-combinat:-fibonacci(i-2)*binomial(2*n-k-i,n), i=0..n-k):
seq(seq(A109267(n, k), k = 0..n), n = 0..10); # Peter Bala, Feb 18 2018
-
(* The function RiordanArray is defined in A256893. *)
c[x_] := (1 - Sqrt[1 - 4 x])/(2 x);
RiordanArray[1/(1 - # c[#] - #^2 c[#]^2)&, # c[#]&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
Previous
Showing 11-20 of 69 results.
Next
Comments