cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A253676 Irregular triangle T read by rows in which row n is the result of iterating the function S defined in A257480 and terminating at the first occurrence of 1, assuming the 3x+1 (or Collatz) conjecture.

Original entry on oeis.org

1, 2, 1, 3, 5, 4, 2, 1, 4, 2, 1, 5, 4, 2, 1, 6, 1, 7, 8, 5, 4, 2, 1, 8, 5, 4, 2, 1, 9, 7, 8, 5, 4, 2, 1, 10, 5, 4, 2, 1, 11, 41, 31, 35, 59, 149, 112, 95, 107, 608, 770, 145, 109, 82, 16, 14, 2, 1, 12, 5, 4, 2, 1, 13, 10, 5, 4, 2, 1, 14, 2, 1, 15, 17, 13, 10, 5, 4, 2, 1
Offset: 1

Views

Author

L. Edson Jeffery, May 02 2015

Keywords

Examples

			T begins:
.    1
.    2  1
.    3  5  4  2  1
.    4  2  1
.    5  4  2  1
.    6  1
.    7  8  5  4  2   1
.    8  5  4  2  1
.    9  7  8  5  4   2   1
.   10  5  4  2  1
.   11 41 31 35 59 149 112 95 107 608 770 145 109 82 16 14 2 1
.   12  5  4  2  1
.   13 10  5  4  2   1
.   14  2  1
.   15 17 13 10  5   4   2  1
		

Crossrefs

Cf. A257480 and cross references therein.

Programs

  • Mathematica
    v[n_] := IntegerExponent[n, 2]; f[x_] := (3*x + 1)/2^v[3*x + 1]; s[n_] := (3 + (3/2)^v[1 + f[4*n - 3]]*(1 + f[4*n - 3]))/6; t[n_] := NestWhileList[s[#] &, n, # > 1 &]; Flatten[Table[t[n], {n, 15}]] (* Replace Flatten with Grid to get the irregular triangle. *)

A254067 Rectangular array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = S(4*A257499(n,k) - 3), n,k >= 1, where the function S is as defined in A257480.

Original entry on oeis.org

1, 8, 4, 5, 17, 7, 68, 32, 26, 10, 41, 149, 59, 35, 13, 608, 284, 230, 86, 44, 16, 365, 1337, 527, 311, 113, 53, 19, 5468, 2552, 2066, 770, 392, 140, 62, 22, 3281, 12029, 4739, 2795, 1013, 473, 167, 71, 25, 49208, 22964, 18590, 6926, 3524, 1256, 554, 194, 80, 28
Offset: 1

Views

Author

L. Edson Jeffery, May 02 2015

Keywords

Comments

Theorem: For all indices n and k such that n + k > 2, log(A(n,k))/log(A257499(n,k)) < log_2(3).
Conjecture: Arranging the sequence in ascending order gives A189707 (positions of 0 in A189706).

Examples

			.       1      4      7     10     13     16     19     22     25     28
.       8     17     26     35     44     53     62     71     80     89
.       5     32     59     86    113    140    167    194    221    248
.      68    149    230    311    392    473    554    635    716    797
.      41    284    527    770   1013   1256   1499   1742   1985   2228
.     608   1337   2066   2795   3524   4253   4982   5711   6440   7169
.     365   2552   4739   6926   9113  11300  13487  15674  17861  20048
.    5468  12029  18590  25151  31712  38273  44834  51395  57956  64517
.    3281  22964  42647  62330  82013 101696 121379 141062 160745 180428
.   49208 108257 167306 226355 285404 344453 403502 462551 521600 580649
		

Programs

  • Mathematica
    (* Array antidiagonals flattened: *)
    v[x_] := IntegerExponent[x, 2]; f[x_] := (3*x + 1)/2^v[3*x + 1]; s[x_] := (3 + (3/2)^v[1 + f[x]] (1 + f[x]))/6; A257499[n_, k_] := (1 + 2^n*(6*k - 3 + 2*(-1)^n))/3; A254067[n_, k_] := s[4*A257499[n, k] - 3]; Flatten[Table[A254067[n - k + 1, k], {n, 10}, {k, n}]]

Formula

A(n,k) = S(4*A257499(n,k) - 3) = (3 + 3^n*(6*k - 3 + 2*(-1)^n))/6, where the function S is as defined in A257480.
For all k, A(1,k) <= A257499(1,k), and A(n,k) > A257499(n,k), for all n > 1.

A254311 Set of all natural numbers m such that m < S(m), where the function S is as defined in A257480.

Original entry on oeis.org

3, 7, 11, 15, 19, 23, 27, 31, 32, 35, 39, 43, 47, 51, 55, 59, 63, 64, 67, 71, 75, 79, 83, 87, 91, 95, 96, 99, 103, 107, 111, 115, 119, 123, 127, 128, 131, 135, 139, 143, 147, 151, 155, 159, 160, 163, 167, 170, 171, 175, 179, 183, 187, 191, 192, 195, 199, 203
Offset: 1

Views

Author

L. Edson Jeffery, May 03 2015

Keywords

Comments

Theorem: The sequence contains (i) a subset of equivalence class 0 modulo 4 comprising all numbers congruent to 0 modulo 32 and no others; (ii) no numbers congruent to 1 modulo 4; (iii) a subset of numbers congruent to 2 modulo 4; (iv) all numbers of congruence class 3 modulo 4.
Conjecture: A254312 is a permutation of this sequence.

Crossrefs

Programs

  • Mathematica
    max = 203; a = {}; v[x_] := IntegerExponent[x, 2]; f[x_] := (3*x + 1)/2^v[3*x + 1]; s[m_] := (3 + (3/2)^v[1 + f[4*m - 3]]*(1 + f[4*m - 3]))/6; Do[If[m < s[m], AppendTo[a, m]], {m, max}]; a

A070165 Irregular triangle read by rows giving trajectory of n in Collatz problem.

Original entry on oeis.org

1, 2, 1, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 5, 16, 8, 4, 2, 1, 6, 3, 10, 5, 16, 8, 4, 2, 1, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 8, 4, 2, 1, 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 10, 5, 16, 8, 4, 2, 1, 11, 34, 17, 52, 26, 13
Offset: 1

Views

Author

Eric W. Weisstein, Apr 23 2002

Keywords

Comments

n-th row has A008908(n) entries (unless some n never reaches 1, in which case the triangle ends with an infinite row). [Escape clause added by N. J. A. Sloane, Jun 06 2017]
A216059(n) is the smallest number not occurring in n-th row; see also A216022.
Comment on the mp3 file from Gordon Charlton (the recording artist Beat Frequency). The piece uses the first 3242 terms (i.e. the first 100 hailstone sequences), with pitch modulus 36, duration modulus 2. Its musicality stems from the many repetitions and symmetries within the sequence, and in particular the infrequency of multiples of 3. This means that when the pitch modulus is a multiple of 12 the notes are predominantly in the symmetric octatonic scale, known to modern classical composers as the second of Messiaen's modes of limited transposition, and to jazz musicians as half-whole diminished. - N. J. A. Sloane, Jan 30 2019

Examples

			The irregular array a(n,k) starts:
n\k   0  1  2  3  4   5  6   7  8  9 10 11 12 13 14 15 16 17 18 19
1:    1
2:    2  1
3:    3 10  5 16  8   4  2   1
4:    4  2  1
5:    5 16  8  4  2   1
6:    6  3 10  5 16   8  4   2  1
7:    7 22 11 34 17  52 26  13 40 20 10  5 16  8  4  2  1
8:    8  4  2  1
9:    9 28 14  7 22  11 34  17 52 26 13 40 20 10  5 16  8  4  2  1
10:  10  5 16  8  4   2  1
11:  11 34 17 52 26  13 40  20 10  5 16  8  4  2  1
12:  12  6  3 10  5  16  8   4  2  1
13:  13 40 20 10  5  16  8   4  2  1
14:  14  7 22 11 34  17 52  26 13 40 20 10  5 16  8  4  2  1
15:  15 46 23 70 35 106 53 160 80 40 20 10  5 16  8  4  2  1
... Reformatted and extended by _Wolfdieter Lang_, Mar 20 2014
		

Crossrefs

Cf. A006370 (step), A008908 (row lengths), A033493 (row sums).
Cf. A220237 (sorted rows), A347270 (array), A192719.
Cf. A070168 (Terras triangle), A256598 (reduced triangle).
Cf. A254311, A257480 (and crossrefs therein).
Cf. A280408 (primes).

Programs

  • Haskell
    a070165 n k = a070165_tabf !! (n-1) !! (k-1)
    a070165_tabf = map a070165_row [1..]
    a070165_row n = (takeWhile (/= 1) $ iterate a006370 n) ++ [1]
    a070165_list = concat a070165_tabf
    -- Reinhard Zumkeller, Oct 07 2011
    
  • Maple
    T:= proc(n) option remember; `if`(n=1, 1,
          [n, T(`if`(n::even, n/2, 3*n+1))][])
        end:
    seq(T(n), n=1..15);  # Alois P. Heinz, Jan 29 2021
  • Mathematica
    Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; Flatten[Table[Collatz[n], {n, 10}]] (* T. D. Noe, Dec 03 2012 *)
  • PARI
    row(n, lim=0)={if (n==1, return([1])); my(c=n, e=0, L=List(n)); if(lim==0, e=1; lim=n*10^6); for(i=1, lim, if(c%2==0, c=c/2, c=3*c+1); listput(L, c); if(e&&c==1, break)); return(Vec(L)); } \\ Anatoly E. Voevudko, Mar 26 2016; edited by Michel Marcus, Aug 10 2021
    
  • Python
    def a(n):
        if n==1: return [1]
        l=[n, ]
        while True:
            if n%2==0: n/=2
            else: n = 3*n + 1
            if n not in l:
                l+=[n, ]
                if n<2: break
            else: break
        return l
    for n in range(1, 101): print(a(n)) # Indranil Ghosh, Apr 14 2017

Formula

T(n,k) = T^{(k)}(n) with the k-th iterate of the Collatz map T with T(n) = 3*n+1 if n is odd and T(n) = n/2 if n is even, n >= 1. T^{(0)}(n) = n. k = 0, 1, ..., A008908(n) - 1. - Wolfdieter Lang, Mar 20 2014

Extensions

Name specified and row length A-number corrected by Wolfdieter Lang, Mar 20 2014

A257499 Array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = (1 + 2^n*(6*k-3+2*(-1)^n))/3, n,k >= 1.

Original entry on oeis.org

1, 7, 5, 3, 15, 9, 27, 19, 23, 13, 11, 59, 35, 31, 17, 107, 75, 91, 51, 39, 21, 43, 235, 139, 123, 67, 47, 25, 427, 299, 363, 203, 155, 83, 55, 29, 171, 939, 555, 491, 267, 187, 99, 63, 33, 1707, 1195, 1451, 811, 619, 331, 219, 115, 71, 37
Offset: 1

Views

Author

L. Edson Jeffery, Apr 27 2015

Keywords

Comments

Conjecture (now Lemma 1): The sequence is a permutation of the odd natural numbers.
Proof from Max Alekseyev, Apr 29 2015:
Reformulating the conjecture, we need to prove that for any integer m >= 0, the equation (1 + 2^n*(6*k - 3 + 2*(-1)^n))/3 = 2*m + 1 has a unique solution in integers n,k >= 1. Simplifying a bit, we have
(1) 2^n*(6*k - 3 + 2*(-1)^n) = 6*m + 2.
Since the factor (6*k - 3 + 2*(-1)^n) is odd, n is uniquely defined by n = A007814(6*m+2). Since 6*m+2 is even, we have n>=1. Dividing (1) by 2^n and rearranging, we further get
(2) 6*k = (6*m + 2)/2^n + 3 - 2*(-1)^n.
To prove the uniqueness of k, it remains to prove that the r.h.s of (2) is divisible by 6. To that end, the value of n implies that (6*m + 2)/2^n is odd; hence the r.h.s. of (2) is even and thus divisible by 2. Now, taking the r.h.s. modulo 3, we get
(6*m + 2)/2^n + 3 - 2*(-1)^n == 2/(-1)^n + 0 - 2*(-1)^n == 0 (mod 3);
so the r.h.s. of (2) is also divisible by 3. Therefore k is uniquely defined by
k = ((6*m + 2)/2^n + 3 - 2*(-1)^n)/6.
Finally, it is easy to see that (6*m + 2)/2^n >= 1, so k >= 1.
QED
Let v(y) denote the 2-adic valuation of y (see A007814). For x an odd natural number, define the function F(x) = (3*x+1)/2^v(3*x+1) (see A075677). Let F^(j)(x) denote k-fold iteration of F and defined by the recurrence F^(j)(x) = F(F^(j-1)(x)), j>0, with initial condition F^(0)(x) = x.
Lemma 2: The following statements are equivalent. (i) Row n of A is the set of all odd m such that F^(n)(4*m-3) == 1 (mod 4); (ii) Row n of A is the set of all odd m such that v(1+F(4m-3)) = n.

Examples

			Array A begins:
.       1     5     9    13    17     21     25     29     33     37
.       7    15    23    31    39     47     55     63     71     79
.       3    19    35    51    67     83     99    115    131    147
.      27    59    91   123   155    187    219    251    283    315
.      11    75   139   203   267    331    395    459    523    587
.     107   235   363   491   619    747    875   1003   1131   1259
.      43   299   555   811  1067   1323   1579   1835   2091   2347
.     427   939  1451  1963  2475   2987   3499   4011   4523   5035
.     171  1195  2219  3243  4267   5291   6315   7339   8363   9387
.    1707  3755  5803  7851  9899  11947  13995  16043  18091  20139
		

Crossrefs

Cf. A255138 (column 1).

Programs

  • Mathematica
    (* Array: *)
    Grid[Table[(1 + 2^n*(6*k - 3 + 2*(-1)^n))/3, {n, 10}, {k, 10}]]
    (* Array antidiagonals flattened: *)
    Flatten[Table[(1 + 2^(n - k + 1)*(6*k - 3 + 2*(-1)^(n - k + 1)))/3, {n, 10}, {k, n}]]

A254070 a(n) = -1 + (3/2)^(-1 + v(1 + F(4*n - 3)))*(1 + F(4*n - 3)), where v(y) is the 2-adic valuation of y, F(x) = (3*x + 1)/2^v(3*x + 1), and x == 1 (mod 2).

Original entry on oeis.org

1, 1, 17, 5, 13, 1, 29, 17, 25, 17, 161, 17, 37, 5, 65, 53, 49, 13, 125, 29, 61, 1, 101, 53, 73, 29, 269, 41, 85, 17, 137, 161, 97, 25, 233, 53, 109, 17, 173, 89, 121, 161, 1457, 65, 133, 17, 209, 161, 145, 37, 341, 77, 157, 5, 245, 125, 169, 65, 593, 89, 181, 53, 281, 485, 193, 49, 449, 101, 205, 13
Offset: 1

Views

Author

L. Edson Jeffery, May 03 2015

Keywords

Comments

a(n) is the first successor in the 3x+1 trajectory of 4*n-3 that is congruent to 1 mod 4. - Ruud H.G. van Tol, Jul 16 2023

Crossrefs

Programs

  • Mathematica
    v[y_] := IntegerExponent[y, 2]; f[x_] := (3*x + 1)/2^v[3*x + 1]; s[n_] := -1 + (3/2)^(-1 + v[1 + f[4*n - 3]])*(1 + f[4*n - 3]); Table[s[n], {n, 70}] (* L. Edson Jeffery, Mar 29 2021 *)
  • PARI
    a(n) = my(x=3*n-2, v=valuation(x,2)); x>>=v; v=valuation(x+1, 2)-1; ((x>>v)+1)*3^v-1; \\ Ruud H.G. van Tol, Jul 16 2023

Formula

a(n) = 4*A257480(n) - 3. - L. Edson Jeffery, Mar 29 2021

Extensions

New name by L. Edson Jeffery, Mar 29 2021

A254312 Rectangular array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = (2^a(n)*(6*k - (3 - (-1)^a(n))*(1 - (-1)^n)/2) - 2^n + 4)/6, n,k >= 1, where {a(n)} is the Beatty sequence A117630 defined by a(n) = floor(n*log(3)/log(3/2)).

Original entry on oeis.org

3, 32, 7, 170, 64, 11, 1022, 426, 96, 15, 2726, 2046, 682, 128, 19, 65526, 10918, 3070, 938, 160, 23, 174742, 131062, 19110, 4094, 1194, 192, 27, 2097110, 436886, 196598, 27302, 5118, 1450, 224, 31, 11184726, 4194262, 699030, 262134, 35494, 6142, 1706, 256, 35
Offset: 1

Views

Author

L. Edson Jeffery, May 03 2015

Keywords

Comments

Conjecture: The array A contains without duplication all natural numbers m such that m < S(m), where the function S is as defined in A257480; i.e., the sequence is a permutation of A254311.

Examples

			Array A begins:
.         3       7      11      15       19       23       27       31
.        32      64      96     128      160      192      224      256
.       170     426     682     938     1194     1450     1706     1962
.      1022    2046    3070    4094     5118     6142     7166     8190
.      2726   10918   19110   27302    35494    43686    51878    60070
.     65526  131062  196598  262134   327670   393206   458742   524278
.    174742  436886  699030  961174  1223318  1485462  1747606  2009750
.   2097110 4194262 6291414 8388566 10485718 12582870 14680022 16777174
		

Crossrefs

Cf. A004767, A174312 (rows 1 and 2).

Programs

  • Mathematica
    (* Array antidiagonals flattened: *)
    a[n_] := Floor[n*Log[3/2, 3]]; A254312[n_, k_] := (2^a[n]*(6*k - (3 - (-1)^a[n])*(1 - (-1)^n)/2) - 2^n + 4)/6; Flatten[Table[A254312[n - k + 1, k], {n, 9}, {k, n}]]

A254068 Irregular triangle T read by rows in which the entry in row n and column k is given by T(n,k) = 4*A253676(n,k) - 3, k = 1..A253720(n), assuming the 3x+1 (or Collatz) conjecture.

Original entry on oeis.org

1, 5, 1, 9, 17, 13, 5, 1, 13, 5, 1, 17, 13, 5, 1, 21, 1, 25, 29, 17, 13, 5, 1, 29, 17, 13, 5, 1, 33, 25, 29, 17, 13, 5, 1, 37, 17, 13, 5, 1, 41, 161, 121, 137, 233, 593, 445, 377, 425, 2429, 3077, 577, 433, 325, 61, 53, 5, 1, 45, 17, 13, 5, 1
Offset: 1

Views

Author

L. Edson Jeffery, May 03 2015

Keywords

Comments

Definitions: Let v(y) denote the 2-adic valuation of y. Let N_1 denote the set of odd natural numbers. Let F : N_1 -> N_1 be the map defined by F(x) = (3*x + 1)/2^v(3*x + 1) (cf. A075677). Let F^(k)(x) denote k-fold iteration of F and defined by the recurrence F^(k)(x) = F(F^(k-1)(x)), k>0, with initial condition F^(0)(x) = x.
This triangle can be constructed by restricting the initial values to the numbers 4*n - 3, iterating F until 1 is reached (assuming the 3x+1 conjecture) and removing all iterates not congruent to 1 modulo 4. Equivalently, for each n, this is accomplished by iterating (until 1 is reached, assuming the 3x+1 conjecture) the function S defined in A257480 to get the triangle A253676, and finally taking T(n,k) = 4*A253676(n,k) - 3.
Conjecture: For each natural number n, there exists a k >= 0, such that F^k(4*n - 3) = 1.
Theorem 1: Conjecture 1 is equivalent to the 3x+1 (or Collatz) conjecture.
Proof: See A257480.

Examples

			T begins:
   1
   5   1
   9  17  13   5   1
  13   5   1
  17  13   5   1
  21   1
  25  29  17  13   5   1
  29  17  13   5   1
  33  25  29  17  13   5   1
  37  17  13   5   1
  41 161 121 137 233 593 445 377 425 2429 3077 577 433 325 61 53 5 1
  45  17  13   5   1
  49  37  17  13   5   1
  53   5   1
  57  65  49  37  17  13   5   1
		

Crossrefs

Programs

  • Mathematica
    v[x_] := IntegerExponent[x, 2]; f[x_] := (3*x + 1)/2^v[3*x + 1]; s[n_] := NestWhileList[(3 + (3/2)^v[1 + f[4*# - 3]]*(1 + f[4*# - 3]))/6 &, n, # > 1 &]; t = Table[4*s[n] - 3, {n, 1, 15}]; Flatten[t] (* Replace Flatten with Grid to display the triangle *)

A258415 Array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = (2 + 2^(n-1)*(6*k - 3 + 2*(-1)^n))/3, n,k >= 1.

Original entry on oeis.org

1, 4, 3, 2, 8, 5, 14, 10, 12, 7, 6, 30, 18, 16, 9, 54, 38, 46, 26, 20, 11, 22, 118, 70, 62, 34, 24, 13, 214, 150, 182, 102, 78, 42, 28, 15, 86, 470, 278, 246, 134, 94, 50, 32, 17, 854, 598, 726, 406, 310, 166, 110, 58, 36, 19
Offset: 1

Views

Author

L. Edson Jeffery, May 29 2015

Keywords

Comments

The sequence is a permutation of the natural numbers.
Theorem: Let v(y) denote the 2-adic valuation of y. For x an odd natural number, let F(x) = (3*x+1)/2^v(3*x+1) (see A075677). Row n of A is the set of all natural numbers m such that v(1+F(4*(2*m-1)-3)) = n.

Examples

			Array begins:
.      1     3     5     7     9    11    13    15    17     19
.      4     8    12    16    20    24    28    32    36     40
.      2    10    18    26    34    42    50    58    66     74
.     14    30    46    62    78    94   110   126   142    158
.      6    38    70   102   134   166   198   230   262    294
.     54   118   182   246   310   374   438   502   566    630
.     22   150   278   406   534   662   790   918  1046   1174
.    214   470   726   982  1238  1494  1750  2006  2262   2518
.     86   598  1110  1622  2134  2646  3158  3670  4182   4694
.    854  1878  2902  3926  4950  5974  6998  8022  9046  10070
		

Crossrefs

Cf. A005408, A008586, A017089 (rows 1-3).

Programs

  • Mathematica
    (* Array: *)
    Grid[Table[(2 + 2^(n - 1)*(6*k - 3 + 2*(-1)^n))/3, {n, 10}, {k, 10}]]
    (* Array antidiagonals flattened: *)
    Flatten[Table[(2 + 2^(n - k)*(6*k - 3 + 2*(-1)^(n - k + 1)))/3, {n, 10}, {k, n}]]

Formula

A(n,k) = (1 + A257499(n,k))/2.

A338199 a(n) = v(1 + F(4*n - 3)), where F(x) = (3*x + 1)/2^v(3*x + 1), x is any odd natural number, and v(y) is the 2-adic valuation of y.

Original entry on oeis.org

1, 1, 3, 1, 1, 1, 2, 2, 1, 3, 5, 1, 1, 1, 2, 3, 1, 1, 3, 1, 1, 1, 2, 2, 1, 2, 4, 1, 1, 2, 2, 4, 1, 1, 3, 1, 1, 3, 2, 2, 1, 5, 7, 1, 1, 1, 2, 3, 1, 1, 3, 1, 1, 1, 2, 2, 1, 2, 4, 1, 1, 3, 2, 5, 1, 1, 3, 1, 1, 1, 2, 2, 1
Offset: 1

Views

Author

L. Edson Jeffery, Oct 17 2020

Keywords

Comments

This is a fractal sequence: removing all entries a(n) with indices n == 0,1 or 3 (mod 4) and reindexing yields the original sequence (see Thm 1 (iii)). This sequence also contains A001511 (the ruler sequence) as a subsequence (see Thm 1 (i)).
THEOREM 1. For all natural numbers n, the following hold: (i) a(4*n) = A001511(n); (ii) a(2*n-1) = a(12*n-8) = A001511(3*n-2); (iii) a(4*n-2) = a(n).
Proof. Let n be a natural number. For part (i), we have F(4*4*n-3) = (3*(16*n-3)+1)/2^v(3*(16*n-3)+1) = (48*n-8)/2^v(48*n-8) = 6*n-1, hence a(4*n) = v(1 + (6*n-1)) = v(6*n) = v(3*2*n) = v(2*n) = A001511(n); for part (ii), v(1+F(4*(2*n-1)-3)) = v(1+(24*n-20)/2^v(24*n-20)) = v(1+(6*n-5)) = v(6*n-4) and, similarly, v(1 + F(4*(12*n-8)-3)) = v(1+(144*n-104)/2^v(144*n-104)) = v(6*n-4), so a(2*n-1) = a(12*n-8), as claimed, and finally note that v(6*n-4) = v(2*(3*n-2)) = A001511(3*n-2); for part (iii), the claim follows from the fact that F(4*(4*n-2)-3) = (48*n-32)/2^v(48*n-32) = (3*n-2)/2^v(3*n-2) = F(4*n-3). QED

Crossrefs

Programs

  • Mathematica
    v[y_] := IntegerExponent[y, 2];f[x_] := (3*x + 1)/2^v[3*x + 1];Table[v[1 + f[4*k - 3]], {k, 73}]

Formula

From Hugo Leeney, Jul 03 2025: (Start)
a(n-1) = v(1 + F(n)) OR a(n) = v(1+ F(n)) where n>=0.
Proof: a(n) = a(n-1) if F(4n-3) = F(n-1), F(4n-3) = 12n-8/2^v(12n-8) = 3n-2/2^(3n-2) = F(n-1). (End)
Showing 1-10 of 11 results. Next