cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 54 results. Next

A374742 Number of integer compositions of n whose leaders of weakly decreasing runs are identical.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 54, 87, 138, 220, 349, 556, 881, 1403, 2229, 3551, 5653, 9019, 14387, 22988, 36739, 58785, 94100, 150765, 241658, 387617, 622002, 998658, 1604032, 2577512, 4143243, 6662520, 10716931, 17243904, 27753518, 44680121, 71947123, 115880662
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2024

Keywords

Comments

The weakly decreasing run-leaders of a sequence are obtained by splitting into maximal weakly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,1,3,2,1,3,3) has maximal weakly decreasing subsequences ((3,1),(3,2,1),(3,3)), with leaders (3,3,3), so is counted under a(16).
The a(0) = 1 through a(6) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (21)   (22)    (32)     (33)
                 (111)  (31)    (41)     (42)
                        (211)   (212)    (51)
                        (1111)  (221)    (222)
                                (311)    (321)
                                (2111)   (411)
                                (11111)  (2112)
                                         (2121)
                                         (2211)
                                         (3111)
                                         (21111)
                                         (111111)
		

Crossrefs

Ranked by A374744 = positions of identical rows in A374740, cf. A374629.
Types of runs (instead of weakly decreasing):
- For leaders of identical runs we have A000005 for n > 0, ranks A272919.
- For leaders of anti-runs we have A374517, ranks A374519.
- For leaders of strictly increasing runs we have A374686, ranks A374685.
- For leaders of weakly increasing runs we have A374631, ranks A374633.
- For leaders of strictly decreasing runs we have A374760, ranks A374759.
Types of run-leaders (instead of identical):
- For strictly decreasing leaders we have A374746.
- For weakly decreasing leaders we have A374747.
- For distinct leaders we have A374743, ranks A374701.
- For weakly increasing leaders we appear to have A188900.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335456 counts patterns matched by compositions.
A335548 counts non-contiguous compositions, ranks A374253.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374748 counts compositions by sum of leaders of weakly decreasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],SameQ@@First/@Split[#,GreaterEqual]&]],{n,0,15}]
  • PARI
    B(i) = x^i/(1-x^i) * sum(j=1,i-1, x^j*prod(k=1,j, (1-x^k)^(-1)))
    A_x(N) = {my(x='x+O('x^N)); Vec(1+sum(i=1,N,-1+(1+x^i/(1-x^i))/(1-B(i))))}
    A_x(30) \\ John Tyler Rascoe, Apr 29 2025

Formula

G.f.: 1 + Sum_{i>0} -1 + (1 + x^i/(1 - x^i))/(1 - B(i,x)) where B(i,x) = x^i/(1 - x^i) * Sum_{j=1..i-1} x^j * Product_{k=1..j} (1 - x^k)^(-1). - John Tyler Rascoe, Apr 29 2025

Extensions

a(24)-a(40) from Alois P. Heinz, Jul 26 2024

A374743 Number of integer compositions of n whose leaders of weakly decreasing runs are distinct.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 29, 55, 105, 198, 371, 690, 1280, 2364, 4353, 7981, 14568, 26466, 47876, 86264, 154896, 277236, 494675, 879924, 1560275, 2757830, 4859010, 8534420, 14945107, 26096824, 45446624, 78939432, 136773519, 236401194, 407614349, 701147189, 1203194421
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2024

Keywords

Comments

The weakly decreasing run-leaders of a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.

Examples

			The composition (1,3,1,4,1,2,2,1) has maximal weakly decreasing subsequences ((1),(3,1),(4,1),(2,2,1)), with leaders (1,3,4,2), so is counted under a(15).
The a(0) = 1 through a(5) = 15 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (211)   (122)
                        (1111)  (131)
                                (221)
                                (311)
                                (1112)
                                (1121)
                                (1211)
                                (2111)
                                (11111)
		

Crossrefs

Ranked by A374701 = positions of distinct rows in A374740, opposite A374629.
Types of runs (instead of weakly decreasing):
- For leaders of identical runs we have A274174, ranks A374249.
- For leaders of anti-runs we have A374518, ranks A374638.
- For leaders of weakly increasing runs we have A374632, ranks A374768.
- For leaders of strictly increasing runs we have A374687, ranks A374698.
- For leaders of strictly decreasing runs we have A374761, ranks A374767.
Types of run-leaders (instead of distinct):
- For weakly increasing leaders we appear to have A188900.
- For identical leaders we have A374742.
- For strictly increasing leaders we have opposite A374634.
- For strictly decreasing leaders we have A374746.
- For weakly decreasing leaders we have A374747.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374748 counts compositions by sum of leaders of weakly decreasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],UnsameQ@@First/@Split[#,GreaterEqual]&]],{n,0,15}]

Extensions

a(24)-a(36) from Alois P. Heinz, Jul 26 2024

A374637 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of weakly increasing runs sum to k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 0, 2, 0, 3, 2, 1, 2, 0, 5, 4, 3, 1, 3, 0, 7, 10, 7, 3, 1, 4, 0, 11, 19, 14, 9, 4, 2, 5, 0, 15, 39, 27, 22, 10, 7, 2, 6, 0, 22, 69, 59, 48, 24, 15, 8, 3, 8, 0, 30, 125, 117, 104, 56, 38, 19, 10, 3, 10, 0, 42, 211, 241, 215, 132, 80, 49, 25, 12, 5, 12
Offset: 0

Views

Author

Gus Wiseman, Jul 23 2024

Keywords

Comments

The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   2   0   2
   0   3   2   1   2
   0   5   4   3   1   3
   0   7  10   7   3   1   4
   0  11  19  14   9   4   2   5
   0  15  39  27  22  10   7   2   6
   0  22  69  59  48  24  15   8   3   8
   0  30 125 117 104  56  38  19  10   3  10
   0  42 211 241 215 132  80  49  25  12   5  12
   0  56 354 473 445 296 186 109  61  31  17   5  15
   0  77 571 917 896 665 409 258 139  78  41  20   7  18
Row n = 6 counts the following compositions:
  .  (15)      (24)     (33)     (312)   (411)  (6)
     (114)     (141)    (231)    (3111)         (51)
     (123)     (1311)   (213)    (2121)         (42)
     (1113)    (1131)   (132)                   (321)
     (1122)    (222)    (2211)
     (11112)   (1221)   (2112)
     (111111)  (1212)   (21111)
               (12111)
               (11211)
               (11121)
		

Crossrefs

Last column n = k is A000009.
Second column k = 2 is A000041.
Row-sums are A011782.
For length instead of sum we have A238343.
The corresponding rank statistic is A374630, row-sums of A374629.
Types of runs (instead of weakly increasing):
- For leaders of constant runs we have A373949.
- For leaders of anti-runs we have A374521.
- For leaders of strictly increasing runs we have A374700.
- For leaders of weakly decreasing runs we have A374748.
- For leaders of strictly decreasing runs we have A374766.
Types of run-leaders:
- For strictly decreasing leaders we appear to have A188920.
- For weakly decreasing leaders we appear to have A189076.
- For identical leaders we have A374631.
- For distinct leaders we have A374632, ranks A374768.
- For strictly increasing leaders we have A374634.
- For weakly increasing leaders we have A374635.
A003242 counts anti-run compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335456 counts patterns matched by compositions.
A335548 counts non-contiguous compositions, ranks A374253.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,LessEqual]]==k&]],{n,0,15},{k,0,n}]

A374701 Numbers k such that the leaders of weakly decreasing runs in the k-th composition in standard order (A066099) are distinct.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2024

Keywords

Comments

First differs from A335469 in having 150, which corresponds to the composition (3,2,1,2).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal weakly decreasing subsequences of the 1257th composition in standard order are ((3,1,1),(2),(3,1)), with leaders (3,2,3), so 1257 is not in the sequence.
		

Crossrefs

Positions of distinct (strict) rows in A374740, opposite A374629.
Compositions of this type are counted by A374743.
For identical leaders we have A374744, counted by A374742.
Other types of runs and their counts: A374249 (A274174), A374638 (A374518), A374698 (A374687), A374767 (A374761), A374768 (A374632).
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Adjacent equal pairs are counted by A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@First/@Split[stc[#],GreaterEqual]&] (* Gus Wiseman, Jul 24 2024 *)

A374760 Number of integer compositions of n whose leaders of strictly decreasing runs are identical.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 15, 21, 28, 38, 52, 70, 95, 129, 173, 234, 318, 428, 579, 784, 1059, 1433, 1942, 2630, 3564, 4835, 6559, 8902, 12094, 16432, 22340, 30392, 41356, 56304, 76692, 104499, 142448, 194264, 265015, 361664, 493749, 674278, 921113, 1258717
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,3,2,1,3,2,1) has strictly decreasing runs ((3),(3,2,1),(3,2,1)), with leaders (3,3,3), so is counted under a(15).
The a(0) = 1 through a(8) = 15 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
           (11)  (21)   (22)    (32)     (33)      (43)       (44)
                 (111)  (31)    (41)     (42)      (52)       (53)
                        (1111)  (212)    (51)      (61)       (62)
                                (221)    (222)     (313)      (71)
                                (11111)  (321)     (331)      (323)
                                         (2121)    (421)      (332)
                                         (111111)  (2122)     (431)
                                                   (2212)     (521)
                                                   (2221)     (2222)
                                                   (1111111)  (3131)
                                                              (21212)
                                                              (21221)
                                                              (22121)
                                                              (11111111)
		

Crossrefs

For partitions instead of compositions we have A034296.
The weak version is A374742, ranks A374744.
The opposite version is A374686, ranks A374685.
The weak opposite version is A374631, ranks A374633.
Ranked by A374759.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000005 for n > 0, ranks A272919.
- For leaders of anti-runs we have A374517, ranks A374519.
Other types of run-leaders (instead of identical):
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For strictly decreasing leaders we have A374763.
- For weakly increasing leaders we have A374764.
- For weakly decreasing leaders we have A374765.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],SameQ@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(1 + sum(k=1, n, 1/(1 - x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))-1)) \\ Andrew Howroyd, Jul 31 2024

Formula

G.f.: 1 + Sum_{k>=1} -1 + 1/(1 - x^k*Product_{j=1..k-1} (1 + x^j)). - Andrew Howroyd, Jul 31 2024

Extensions

a(24) onwards from Andrew Howroyd, Jul 31 2024

A374253 Numbers k such that the k-th composition in standard order matches the patterns (1,2,1) or (2,1,2).

Original entry on oeis.org

13, 22, 25, 27, 29, 45, 46, 49, 51, 53, 54, 55, 57, 59, 61, 76, 77, 82, 86, 89, 90, 91, 93, 94, 97, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 115, 117, 118, 119, 121, 123, 125, 141, 148, 150, 153, 155, 156, 157, 162, 165, 166, 173, 174, 177, 178
Offset: 1

Views

Author

Gus Wiseman, Jul 13 2024

Keywords

Comments

Such a composition cannot be strict.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their standard compositions begin:
  13: (1,2,1)
  22: (2,1,2)
  25: (1,3,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  45: (2,1,2,1)
  46: (2,1,1,2)
  49: (1,4,1)
  51: (1,3,1,1)
  53: (1,2,2,1)
  54: (1,2,1,2)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
  61: (1,1,1,2,1)
  76: (3,1,3)
  77: (3,1,2,1)
  82: (2,3,2)
  86: (2,2,1,2)
  89: (2,1,3,1)
		

Crossrefs

Permutations of prime indices of this type are counted by A335460.
Compositions of this type are counted by A335548.
The complement is A374249, counted by A274174.
The anti-run case is A374254.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A025047 counts wiggly compositions, ranks A345167.
A066099 lists compositions in standard order.
A124767 counts runs in standard compositions, anti-runs A333381.
A233564 ranks strict compositions, counted by A032020.
A333755 counts compositions by number of runs.
A335454 counts patterns matched by standard compositions.
A335456 counts patterns matched by compositions.
A335462 counts (1,2,1)- and (2,1,2)-matching permutations of prime indices.
A335465 counts minimal patterns avoided by a standard composition.
- A335470 counts (1,2,1)-matching compositions, ranks A335466.
- A335471 counts (1,2,1)-avoiding compositions, ranks A335467.
- A335472 counts (2,1,2)-matching compositions, ranks A335468.
- A335473 counts (2,1,2)-avoiding compositions, ranks A335469.
A373948 encodes run-compression using compositions in standard order.
A373949 counts compositions by run-compressed sum, opposite A373951.
A373953 gives run-compressed sum of standard compositions, excess A373954.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!UnsameQ@@First/@Split[stc[#]]&]

Formula

Equals A335466 \/ A335468.

A188900 Number of compositions of n that avoid the pattern 12-3.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 31, 60, 114, 215, 402, 746, 1375, 2520, 4593, 8329, 15036, 27027, 48389, 86314, 153432, 271853, 480207, 845804, 1485703, 2603018, 4549521, 7933239, 13803293, 23966682, 41530721, 71830198, 124010381, 213725823, 367736268, 631723139, 1083568861
Offset: 0

Views

Author

Nathaniel Johnston, Apr 17 2011

Keywords

Comments

First differs from the non-dashed version A102726 at a(9) = 215, A102726(9) = 214, due to the composition (1,3,2,3).
The value a(11) = 7464 in Heubach et al. is a typo.
Theorem: A composition avoids 3-12 iff its leaders of maximal weakly decreasing runs are weakly increasing. For example, the composition q = (1,1,2,1,2,2,1,3) has maximal weakly decreasing runs ((1,1),(2,1),(2,2,1),(3)), with leaders (1,2,2,3), which are weakly increasing, so q is counted under a(13); also q avoids 3-12, as required. On the other hand, the composition q = (3,2,1,2,2,1,2) has maximal weakly decreasing runs ((3,2,1),(2,2,1),(2)), with leaders (3,2,2), which are not weakly increasing, so q is not counted under a(13); also q matches 3-12, as required. - Gus Wiseman, Aug 21 2024

Examples

			The initial terms are too dense, but see A375406 for the complement. - _Gus Wiseman_, Aug 21 2024
		

Crossrefs

The non-dashed version A102726, non-ranks A335483.
For 23-1 we have A189076.
The non-ranks are a subset of A335479 and do not include 404, 788, 809, ...
For strictly increasing leaders we have A358836, ranks A326533.
The strict version is A374762.
The complement is counted by A375406.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.

Programs

  • Maple
    with(PolynomialTools):n:=20:taypoly:=taylor(mul(1/(1 - x^i/mul(1-x^j,j=1..i-1)),i=1..n),x=0,n+1):seq(coeff(taypoly,x,m),m=0..n);
  • Mathematica
    m = 35;
    Product[1/(1 - x^i/Product[1 - x^j, {j, 1, i - 1}]), {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Mar 31 2020 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], LessEqual@@First/@Split[#,GreaterEqual]&]],{n,0,15}] (* Gus Wiseman, Aug 21 2024 *)

Formula

G.f.: Product_{i>=1} (1/(1 - x^i/Product_{j=1..i-1} (1 - x^j))).
a(n) = 2^(n-1) - A375406(n). - Gus Wiseman, Aug 22 2024

A019472 Weak preference orderings of n alternatives, i.e., orderings that have indifference between at least two alternatives.

Original entry on oeis.org

0, 0, 1, 7, 51, 421, 3963, 42253, 505515, 6724381, 98618763, 1582715773, 27612565995, 520631327581, 10554164679243, 228975516609853, 5294731892093355, 130015079601039901, 3379132289551117323, 92679942218919579133, 2675254894236207563115, 81073734056332364441821
Offset: 0

Views

Author

Robert Ware (bware(AT)wam.umd.edu)

Keywords

Comments

From Gus Wiseman, Jun 24 2020: (Start)
Equivalently, a(n) is number of (1,1)-matching sequences of length n that cover an initial interval of positive integers. For example, the a(2) = 1 and a(3) = 7 sequences are:
(1,1) (1,1,1)
(1,1,2)
(1,2,1)
(1,2,2)
(2,1,1)
(2,1,2)
(2,2,1)
Missing from this list are:
(1,2) (1,2,3)
(2,1) (1,3,2)
(2,1,3)
(2,3,1)
(3,1,2)
(3,2,1)
(End)

Crossrefs

(1,1)-avoiding patterns are counted by A000142.
(1,2)-matching patterns are counted by A056823.
(1,1)-matching compositions are counted by A261982.
(1,1)-matching compositions are ranked by A335488.
Patterns matched by patterns are counted by A335517.

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(j-i)*Binomial[j, i]*i^n, {i, 0, n-1}, {j, 0, n-1}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Feb 26 2016, after Peter Luschny *)
  • Sage
    def A019472(n):
        return add(add((-1)^(j-i)*binomial(j, i)*i^n for i in range(n)) for j in range(n))
    [A019472(n) for n in range(21)] # Peter Luschny, Jul 22 2014

Formula

a(n) = A000670(n) - n!. - corrected by Eugene McDonnell, May 12 2000
a(n) = Sum_{j=0..n-1} Sum_{i=0..n-1} (-1)^(j-i)*C(j, i)*i^n. - Peter Luschny, Jul 22 2014

A374748 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of weakly decreasing runs sum to k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 2, 3, 2, 0, 1, 2, 6, 4, 3, 0, 1, 3, 9, 8, 7, 4, 0, 1, 3, 13, 15, 16, 11, 5, 0, 1, 4, 17, 24, 32, 28, 16, 6, 0, 1, 4, 23, 36, 58, 58, 44, 24, 8, 0, 1, 5, 28, 52, 96, 115, 100, 71, 34, 10, 0, 1, 5, 35, 72, 151, 203, 211, 176, 109, 49, 12
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2024

Keywords

Comments

The weakly decreasing run-leaders of a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   1   1   2
   0   1   2   3   2
   0   1   2   6   4   3
   0   1   3   9   8   7   4
   0   1   3  13  15  16  11   5
   0   1   4  17  24  32  28  16   6
   0   1   4  23  36  58  58  44  24   8
   0   1   5  28  52  96 115 100  71  34  10
   0   1   5  35  72 151 203 211 176 109  49  12
Row n = 6 counts the following compositions:
  .  (111111)  (222)    (33)     (42)    (51)    (6)
               (2211)   (321)    (411)   (141)   (15)
               (21111)  (3111)   (132)   (114)   (24)
                        (1221)   (1311)  (312)   (123)
                        (1122)   (1131)  (231)
                        (12111)  (1113)  (213)
                        (11211)  (2121)  (1212)
                        (11121)  (2112)
                        (11112)
		

Crossrefs

Column n = k is A000009.
Column k = 2 is A004526.
Row-sums are A011782.
For length instead of sum we have A238343.
The opposite rank statistic is A374630, row-sums of A374629.
Column k = 3 is A374702.
The center n = 2k is A374703.
The corresponding rank statistic is A374741 row-sums of A374740.
Types of runs (instead of weakly decreasing):
- For leaders of constant runs we have A373949.
- For leaders of anti-runs we have A374521.
- For leaders of weakly increasing runs we have A374637.
- For leaders of strictly increasing runs we have A374700.
- For leaders of strictly decreasing runs we have A374766.
Types of run-leaders:
- For weakly increasing leaders we appear to have A188900.
- For identical leaders we have A374742, ranks A374744.
- For distinct leaders we have A374743, ranks A374701.
- For strictly decreasing leaders we have A374746.
- For weakly decreasing leaders we have A374747.
A003242 counts anti-run compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335456 counts patterns matched by compositions.
A335548 counts non-contiguous compositions, ranks A374253.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,GreaterEqual]]==k&]],{n,0,15},{k,0,n}]

A374689 Number of integer compositions of n whose leaders of strictly increasing runs are strictly decreasing.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 10, 13, 21, 32, 48, 66, 101, 144, 207, 298, 415, 592, 833, 1163, 1615, 2247, 3088, 4259, 5845, 7977, 10862, 14752, 19969, 26941, 36310, 48725, 65279, 87228, 116274, 154660, 205305, 271879, 359400, 474157, 624257, 820450, 1076357, 1409598
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the minima are strictly decreasing. The weakly decreasing version is A374697.

Examples

			The a(0) = 1 through a(8) = 21 compositions:
  ()  (1)  (2)  (3)   (4)   (5)    (6)    (7)    (8)
                (12)  (13)  (14)   (15)   (16)   (17)
                (21)  (31)  (23)   (24)   (25)   (26)
                            (32)   (42)   (34)   (35)
                            (41)   (51)   (43)   (53)
                            (212)  (123)  (52)   (62)
                                   (213)  (61)   (71)
                                   (231)  (124)  (125)
                                   (312)  (214)  (134)
                                   (321)  (241)  (215)
                                          (313)  (251)
                                          (412)  (314)
                                          (421)  (323)
                                                 (341)
                                                 (413)
                                                 (431)
                                                 (512)
                                                 (521)
                                                 (2123)
                                                 (2312)
                                                 (3212)
		

Crossrefs

The weak version appears to be A189076.
Ranked by positions of strictly decreasing rows in A374683.
The opposite version is A374762.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374680.
- For leaders of weakly increasing runs we have A188920.
- For leaders of weakly decreasing runs we have A374746.
- For leaders of strictly decreasing runs we have A374763.
Types of run-leaders (instead of strictly decreasing):
- For identical leaders we have A374686, ranks A374685.
- For distinct leaders we have A374687, ranks A374698.
- For strictly increasing leaders we have A374688.
- For weakly increasing leaders we have A374690.
- For weakly decreasing leaders we have A374697.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,Less]&]],{n,0,15}]
  • PARI
    C_x(N) = {my(x='x+O('x^N), h=prod(i=1,N, 1+(x^i)*prod(j=i+1,N, 1+x^j))); Vec(h)}
    C_x(50) \\ John Tyler Rascoe, Jul 29 2024

Formula

G.f.: Product_{i>0} (1 + (x^i)*Product_{j>i} (1 + x^j)). - John Tyler Rascoe, Jul 29 2024

Extensions

a(26) onwards from John Tyler Rascoe, Jul 29 2024
Previous Showing 11-20 of 54 results. Next