cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A303814 Generalized 24-gonal (or icositetragonal) numbers: m*(11*m - 10) with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 21, 24, 64, 69, 129, 136, 216, 225, 325, 336, 456, 469, 609, 624, 784, 801, 981, 1000, 1200, 1221, 1441, 1464, 1704, 1729, 1989, 2016, 2296, 2325, 2625, 2656, 2976, 3009, 3349, 3384, 3744, 3781, 4161, 4200, 4600, 4641, 5061, 5104, 5544, 5589, 6049, 6096, 6576, 6625
Offset: 0

Views

Author

Omar E. Pol, Jun 06 2018

Keywords

Comments

a(25) = 1729 is the Hardy-Ramanujan number.
Numbers k such that 11*k + 25 is a square. - Bruno Berselli, Jun 08 2018
Partial sums of A317320. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), this sequence (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Mathematica
    With[{pp = 24, nn = 55}, {0}~Join~Riffle[Array[PolygonalNumber[pp, #] &, Ceiling[nn/2]], Array[PolygonalNumber[pp, -#] &, Ceiling[nn/2]]]] (* Michael De Vlieger, Jun 06 2018 *)
    Table[(22 n (n + 1) + 9 (2 n + 1) (-1)^n - 9)/8, {n, 0, 50}] (* Bruno Berselli, Jun 08 2018 *)
    CoefficientList[ Series[-x (x^2 + 20x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 21, 24, 64}, 50] (* Robert G. Wilson v, Jul 28 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 20*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^40))) \\ Colin Barker, Jun 12 2018

Formula

From Bruno Berselli, Jun 08 2018: (Start)
G.f.: x*(1 + 20*x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n-1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (22*n*(n + 1) + 9*(2*n + 1)*(-1)^n - 9)/8. Therefore:
a(n) = n*(11*n + 20)/4, if n is even, or (n + 1)*(11*n - 9)/4 otherwise.
(2*n - 1)*a(n) + (2*n + 1)*a(n-1) - n*(11*n^2 - 10) = 0. (End)
Sum_{n>=1} 1/a(n) = (11 + 10*Pi*cot(Pi/11))/100. - Amiram Eldar, Mar 01 2022

A316724 Generalized 26-gonal (or icosihexagonal) numbers: m*(12*m - 11) with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 23, 26, 70, 75, 141, 148, 236, 245, 355, 366, 498, 511, 665, 680, 856, 873, 1071, 1090, 1310, 1331, 1573, 1596, 1860, 1885, 2171, 2198, 2506, 2535, 2865, 2896, 3248, 3281, 3655, 3690, 4086, 4123, 4541, 4580, 5020, 5061, 5523, 5566, 6050, 6095, 6601, 6648, 7176, 7225, 7775
Offset: 0

Views

Author

Omar E. Pol, Jul 11 2018

Keywords

Comments

48*a(n) + 121 is a square. - Bruno Berselli, Jul 11 2018
Partial sums of A317322. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), this sequence (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    [(12*n*(n+1) + 5*(-1)^n*(2*n+1) -5)/4: n in [0..60]]; // G. C. Greubel, Sep 24 2024
    
  • Mathematica
    Table[(12 n (n + 1) + 5 (2 n + 1) (-1)^n - 5)/4, {n, 0, 60}] (* Bruno Berselli, Jul 11 2018 *)
    CoefficientList[ Series[-x (x^2 + 22x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 60}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 23, 26, 70}, 60] (* Robert G. Wilson v, Jul 28 2018 *)
    nn=30; Sort[Table[n (12 n - 11), {n, -nn, nn}]] (* Vincenzo Librandi, Jul 29 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 22*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^60))) \\ Colin Barker, Jul 12 2018
    
  • SageMath
    [(12*n*(n+1) + 5*(-1)^n*(2*n+1) -5)//4 for n in range(61)] # G. C. Greubel, Sep 24 2024

Formula

From Bruno Berselli, Jul 11 2018: (Start)
O.g.f.: x*(1 + 22*x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-1-n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (12*n*(n + 1) + 5*(2*n + 1)*(-1)^n - 5)/4. Therefore:
a(n) = n*(6*n + 11)/2 for n even; otherwise, a(n) = (n + 1)*(6*n - 5)/2.
(2*n - 1)*a(n) + (2*n + 1)*a(n-1) - n*(12*n^2 - 11) = 0. (End)
From Amiram Eldar, Mar 01 2022: (Start)
Sum_{n>=1} 1/a(n) = 12/121 + (sqrt(3)+2)*Pi/11.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(3)*log(sqrt(3)+2) + 6*log(2) + 3*log(3))/11 - 12/121. (End)
E.g.f.: (1/4)*(5*(1 - 2*x)*exp(-x) + (-5 + 24*x + 12*x^2)*exp(x)). - G. C. Greubel, Sep 24 2024

A316725 Generalized 27-gonal (or icosiheptagonal) numbers: m*(25*m - 23)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 24, 27, 73, 78, 147, 154, 246, 255, 370, 381, 519, 532, 693, 708, 892, 909, 1116, 1135, 1365, 1386, 1639, 1662, 1938, 1963, 2262, 2289, 2611, 2640, 2985, 3016, 3384, 3417, 3808, 3843, 4257, 4294, 4731, 4770, 5230, 5271, 5754, 5797, 6303, 6348, 6877, 6924, 7476, 7525, 8100, 8151, 8749, 8802
Offset: 0

Views

Author

Omar E. Pol, Jul 11 2018

Keywords

Comments

Note that in the sequences of generalized k-gonal numbers always a(3) = k. In this case k = 27.
Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, with k >= 5.
A general formula for the generalized k-gonal numbers is given by m*((k-2)*m-k+4)/2, with m = 0, +1, -1, +2, -2, +3, -3, ..., k >= 5.
Partial sums of A317323. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), this sequence (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • GAP
    a:=[0,1,24,27,73];;  for n in [6..60] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Jul 16 2018
  • Maple
    a:= n-> (m-> m*(25*m-23)/2)(-ceil(n/2)*(-1)^n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jul 11 2018
  • Mathematica
    CoefficientList[Series[-x (x^2 + 23x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 53}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 24, 27, 73, 78, 147}, 53] (* Robert G. Wilson v, Jul 28 2018; corrected by Georg Fischer, Apr 03 2019 *)
    nn=30; Sort[Table[n (25 n - 23) / 2, {n, -nn, nn}]] (* Vincenzo Librandi, Jul 29 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 23*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jul 11 2018
    

Formula

From Colin Barker, Jul 11 2018: (Start)
G.f.: x*(1 + 23*x + x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = n*(25*n + 46)/8 for n even.
a(n) = (25*n - 21)*(n + 1)/8 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)
Sum_{n>=1} 1/a(n) = 2*(25 + 23*Pi*cot(2*Pi/25))/529. - Amiram Eldar, Mar 01 2022

A316729 Generalized 30-gonal (or triacontagonal) numbers: m*(14*m - 13) with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 27, 30, 82, 87, 165, 172, 276, 285, 415, 426, 582, 595, 777, 792, 1000, 1017, 1251, 1270, 1530, 1551, 1837, 1860, 2172, 2197, 2535, 2562, 2926, 2955, 3345, 3376, 3792, 3825, 4267, 4302, 4770, 4807, 5301, 5340, 5860, 5901, 6447, 6490, 7062, 7107, 7705, 7752, 8376, 8425, 9075, 9126, 9802, 9855
Offset: 0

Views

Author

Omar E. Pol, Jul 11 2018

Keywords

Comments

Note that in the sequences of generalized k-gonal numbers always a(3) = k. In this case k = 30.
Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, with k >= 5.
A general formula for the generalized k-gonal numbers is given by m*((k-2)*m-k+4)/2, with m = 0, +1, -1, +2, -2, +3, -3, ..., k >= 5.
Every sequence of generalized k-gonal numbers can be represented as vertices of a rectangular spiral constructed with line segments on the square grid, with k >= 5.
56*a(n) + 169 is a square. - Vincenzo Librandi, Jul 12 2018
Generalized k-gonal numbers are the partial sums of the sequence formed by the multiples of (k - 4) and the odd numbers (A005408) interleaved, with k >= 5. - Omar E. Pol, Jul 27 2018
Also partial sums of A317326. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), this sequence (k=30).

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 26 x + x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 55}], x] (* Vincenzo Librandi, Jul 12 2018 *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 27, 30, 82}, 47] (* Robert G. Wilson v, Jul 28 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 26*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^40))) \\ Colin Barker, Jul 16 2018

Formula

G.f.: x*(1 + 26*x + x^2)/((1 + x)^2*(1 - x)^3). - Vincenzo Librandi, Jul 12 2018
From Amiram Eldar, Mar 01 2022: (Start)
a(n) = (28*n*(n + 1) + 12*(2*n + 1)*(-1)^n - 12)/8.
a(n) = n*(7*n + 13)/2, if n is even, or (n + 1)*(7*n - 6)/2 otherwise.
Sum_{n>=1} 1/a(n) = 14/169 + Pi*cot(Pi/14)/13. (End)

Extensions

Duplicated term (1551) deleted by Colin Barker, Jul 16 2018

A299645 Numbers of the form m*(8*m + 5), where m is an integer.

Original entry on oeis.org

0, 3, 13, 22, 42, 57, 87, 108, 148, 175, 225, 258, 318, 357, 427, 472, 552, 603, 693, 750, 850, 913, 1023, 1092, 1212, 1287, 1417, 1498, 1638, 1725, 1875, 1968, 2128, 2227, 2397, 2502, 2682, 2793, 2983, 3100, 3300, 3423, 3633, 3762, 3982, 4117, 4347, 4488, 4728, 4875
Offset: 1

Views

Author

Bruno Berselli, Feb 26 2018

Keywords

Comments

Equivalently, numbers k such that 32*k + 25 is a square. This means that 4*a(n) + 3 is a triangular number.
Interleaving of A139277 and A139272 (without 0).

Crossrefs

Subsequence of A011861, A047222.
Cf. numbers of the form m*(8*m + h): A154260 (h=1), A014494 (h=2), A274681 (h=3), A046092 (h=4), this sequence (h=5), 2*A074377 (h=6), A274979 (h=7).

Programs

  • GAP
    List([1..50], n -> (8*n*(n-1)-(2*n-1)*(-1)^n-1)/4);
    
  • Julia
    [div((8n*(n-1)-(2n-1)*(-1)^n-1), 4) for n in 1:50] # Peter Luschny, Feb 27 2018
  • Magma
    [(8*n*(n-1)-(2*n-1)*(-1)^n-1)/4: n in [1..50]];
    
  • Maple
    seq((exp(I*Pi*x)*(1-2*x)+8*(x-1)*x-1)/4, x=1..50); # Peter Luschny, Feb 27 2018
  • Mathematica
    Table[(8 n (n - 1) - (2 n - 1) (-1)^n - 1)/4, {n, 1, 50}]
  • Maxima
    makelist((8*n*(n-1)-(2*n-1)*(-1)^n-1)/4, n, 1, 50);
    
  • PARI
    vector(50, n, nn; (8*n*(n-1)-(2*n-1)*(-1)^n-1)/4)
    
  • PARI
    concat(0, Vec(x^2*(3 + 10*x + 3*x^2)/((1 - x)^3*(1 + x)^2) + O(x^60))) \\ Colin Barker, Feb 27 2018
    
  • Python
    [(8*n*(n-1)-(2*n-1)*(-1)**n-1)/4 for n in range(1, 60)]
    
  • Python
    def A299645(n): return (n>>1)*((n<<2)+(1 if n&1 else -5)) # Chai Wah Wu, Mar 11 2025
    
  • Sage
    [(8*n*(n-1)-(2*n-1)*(-1)^n-1)/4 for n in (1..50)]
    

Formula

O.g.f.: x^2*(3 + 10*x + 3*x^2)/((1 - x)^3*(1 + x)^2).
E.g.f.: (1 + 2*x - (1 - 8*x^2)*exp(2*x))*exp(-x)/4.
a(n) = a(-n+1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (8*n*(n - 1) - (2*n - 1)*(-1)^n - 1)/4 = (2*n + (-1)^n - 1)*(4*n - 3*(-1)^n - 2)/4. Therefore, 3 and 13 are the only prime numbers in this sequence.
a(n) + a(n+1) = 4*n^2 for even n, otherwise a(n) + a(n+1) = 4*n^2 - 1.
From Amiram Eldar, Mar 18 2022: (Start)
Sum_{n>=2} 1/a(n) = 8/25 + (sqrt(2)-1)*Pi/5.
Sum_{n>=2} (-1)^n/a(n) = 8*log(2)/5 - sqrt(2)*log(2*sqrt(2)+3)/5 - 8/25. (End)
a(n) = (n-1)*(4*n+1)/2 if n is odd and a(n) = n*(4*n-5)/2 if n is even. - Chai Wah Wu, Mar 11 2025

A010021 a(0) = 1, a(n) = 32*n^2 + 2 for n > 0.

Original entry on oeis.org

1, 34, 130, 290, 514, 802, 1154, 1570, 2050, 2594, 3202, 3874, 4610, 5410, 6274, 7202, 8194, 9250, 10370, 11554, 12802, 14114, 15490, 16930, 18434, 20002, 21634, 23330, 25090, 26914, 28802, 30754, 32770, 34850, 36994, 39202, 41474, 43810, 46210, 48674, 51202
Offset: 0

Views

Author

Keywords

Comments

From Omar E. Pol, Apr 21 2021: (Start)
Sequence found by reading the line segment from 1 to 34 together with the line from 34, in the direction 34, 130, ..., in the rectangular spiral whose vertices are the generalized 18-gonal numbers A274979.
The spiral begins as follows:
46_ _ _ _ _ _ _ _ _ _18
| |
| 0 |
| | _ _ _ _ |
| 1 15
|
51
(End)

Crossrefs

Cf. A274979 (generalized 18-gonal numbers).

Programs

  • Mathematica
    Join[{1}, 32 Range[40]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
    CoefficientList[Series[(1 + x) (1 + 30 x + x^2)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 25 2014 *)

Formula

G.f.: (1+x)*(1+30*x+x^2)/(1-x)^3. [Bruno Berselli, Feb 07 2012]
a(n) = A005893(4n) = A008527(2n); a(n+1) = A108100(2n+2). [Bruno Berselli, Feb 07 2012]
E.g.f.: (x*(x+1)*32+2)*e^x-1. - Gopinath A. R., Feb 14 2012
a(n) = (4n+1)^2+(4n-1)^2 for n>0. [Bruno Berselli, Jun 24 2014]
a(n) = A244082(n) + 2, n >= 1. - Omar E. Pol, Apr 21 2021
Sum_{n>=0} 1/a(n) = 3/4 + Pi/16*coth(Pi/4) = 1.04940725316131.. - R. J. Mathar, May 07 2024
a(n) = 2*A108211(n). - R. J. Mathar, May 07 2024
a(n) = A195315(n)+A195315(n+1). - R. J. Mathar, May 07 2024

A158563 a(n) = 32*n^2 - 1.

Original entry on oeis.org

31, 127, 287, 511, 799, 1151, 1567, 2047, 2591, 3199, 3871, 4607, 5407, 6271, 7199, 8191, 9247, 10367, 11551, 12799, 14111, 15487, 16927, 18431, 19999, 21631, 23327, 25087, 26911, 28799, 30751, 32767, 34847, 36991, 39199, 41471, 43807, 46207, 48671, 51199, 53791
Offset: 1

Views

Author

Vincenzo Librandi, Mar 21 2009

Keywords

Comments

The identity (32*n^2 - 1)^2 - (256*n^2 - 16)*(2*n)^2 = 1 can be written as a(n)^2 - A158562(n)*A005843(n)^2 = 1. [comment rewritten by R. J. Mathar, Oct 16 2009]
From Omar E. Pol, Apr 21 2021: (Start)
Sequence found by reading the line from 31, in the direction 31, 127, ..., in the rectangular spiral whose vertices are the generalized 18-gonal numbers A274979.
The spiral begins as follows:
46_ _ _ _ _ _ _ _ _ _18
| |
| 0 |
| | _ _ _ _ |
| 1 15
|
51
(End)

Crossrefs

Cf. A274979 (generalized 18-gonal numbers).

Programs

Formula

G.f.: x*(-31-34*x+x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A244082(n) - 1. - Omar E. Pol, Apr 21 2021
From Amiram Eldar, Mar 09 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)) - 1)/2. (End)
E.g.f.: 1 + exp(x)*(32*x^2 + 32*x - 1). - Elmo R. Oliveira, Jan 25 2025

A158575 a(n) = 32*n^2 + 1.

Original entry on oeis.org

1, 33, 129, 289, 513, 801, 1153, 1569, 2049, 2593, 3201, 3873, 4609, 5409, 6273, 7201, 8193, 9249, 10369, 11553, 12801, 14113, 15489, 16929, 18433, 20001, 21633, 23329, 25089, 26913, 28801, 30753, 32769, 34849, 36993, 39201, 41473, 43809, 46209, 48673, 51201, 53793
Offset: 0

Views

Author

Vincenzo Librandi, Mar 21 2009

Keywords

Comments

The identity (32*n^2 + 1)^2 - (256*n^2 + 16)*(2*n)^2 = 1 can be written as a(n)^2-A158574(n)*A005843(n)^2 = 1. - Comment rewritten by R. J. Mathar, Oct 16 2009
Sequence found by reading the line segment from 1 to 33 together with the line from 33, in the direction 33, 129, ..., in the square spiral whose vertices are the generalized 18-gonal numbers A274979. - Omar E. Pol, Apr 21 2021

Crossrefs

Cf. A274979 (generalized 18-gonal numbers).

Programs

  • Magma
    I:=[1, 33, 129]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 15 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {1, 33, 129}, 50] (* Vincenzo Librandi, Feb 15 2012 *)
    32*Range[0,40]^2+1 (* Harvey P. Dale, Jul 20 2021 *)
  • PARI
    for(n=0, 50, print1(32*n^2+1", ")); \\ Vincenzo Librandi, Feb 15 2012

Formula

G.f.: (1+30*x+33*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
For n > 0 a(n) = sqrt(8*(A000217(4*n-1)^2 + A000217(4*n)^2) + 1). - J. M. Bergot, Sep 03 2015
a(n) = A244082(n) + 1. - Omar E. Pol, Apr 21 2021
From Amiram Eldar, Mar 09 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + coth(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + cosech(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)))/2. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: exp(x)*(1 + 32*x + 32*x^2).
a(n) = A081585(2*n). (End)

Extensions

a(0) added by R. J. Mathar, Oct 16 2009

A303301 Square array T(n,k) read by antidiagonals upwards in which row n is obtained by taking the general formula for generalized n-gonal numbers: m*((n - 2)*m - n + 4)/2, where m = 0, +1, -1, +2, -2, +3, -3, ... and n >= 5. Here n >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, -3, 0, 1, -2, 0, 0, 1, -1, 1, -8, 0, 1, 0, 2, -5, -3, 0, 1, 1, 3, -2, 0, -15, 0, 1, 2, 4, 1, 3, -9, -8, 0, 1, 3, 5, 4, 6, -3, -2, -24, 0, 1, 4, 6, 7, 9, 3, 4, -14, -15, 0, 1, 5, 7, 10, 12, 9, 10, -4, -5, -35, 0, 1, 6, 8, 13, 15, 15, 16, 6, 5, -20, -24, 0, 1, 7, 9, 16, 18, 21, 22, 16, 15, -5, -9, -48
Offset: 0

Views

Author

Omar E. Pol, Jun 08 2018

Keywords

Comments

Note that the formula mentioned in the definition gives several kinds of numbers, for example:
Row 0 and row 1 give A317300 and A317301 respectively.
Row 2 gives A001057 (canonical enumeration of integers).
Row 3 gives 0 together with A008795 (Molien series for 3-dimensional representation of dihedral group D_6 of order 6).
Row 4 gives A008794 (squares repeated) except the initial zero.
Finally, for n >= 5 row n gives the generalized k-gonal numbers (see Crossrefs section).

Examples

			Array begins:
------------------------------------------------------------------
n\m  Seq. No.    0   1  -1   2  -2   3   -3    4   -4    5   -5
------------------------------------------------------------------
0    A317300:    0,  1, -3,  0, -8, -3, -15,  -8, -24, -15, -35...
1    A317301:    0,  1, -2,  1, -5,  0,  -9,  -2, -14,  -5, -20...
2    A001057:    0,  1, -1,  2, -2,  3,  -3,   4,  -4,   5,  -5...
3   (A008795):   0,  1,  0,  3,  1,  6,   3,  10,   6,  15,  10...
4   (A008794):   0,  1,  1,  4,  4,  9,   9,  16,  16,  25,  25...
5    A001318:    0,  1,  2,  5,  7, 12,  15,  22,  26,  35,  40...
6    A000217:    0,  1,  3,  6, 10, 15,  21,  28,  36,  45,  55...
7    A085787:    0,  1,  4,  7, 13, 18,  27,  34,  46,  55,  70...
8    A001082:    0,  1,  5,  8, 16, 21,  33,  40,  56,  65,  85...
9    A118277:    0,  1,  6,  9, 19, 24,  39,  46,  66,  75, 100...
10   A074377:    0,  1,  7, 10, 22, 27,  45,  52,  76,  85, 115...
11   A195160:    0,  1,  8, 11, 25, 30,  51,  58,  86,  95, 130...
12   A195162:    0,  1,  9, 12, 28, 33,  57,  64,  96, 105, 145...
13   A195313:    0,  1, 10, 13, 31, 36,  63,  70, 106, 115, 160...
14   A195818:    0,  1, 11, 14, 34, 39,  69,  76, 116, 125, 175...
15   A277082:    0,  1, 12, 15, 37, 42,  75,  82, 126, 135, 190...
...
		

Crossrefs

Columns 0..2 are A000004, A000012, A023445.
Column 3 gives A001477 which coincides with the row numbers.
Main diagonal gives A292551.
Row 0-2 gives A317300, A317301, A001057.
Row 3 gives 0 together with A008795.
Row 4 gives A008794.
For n >= 5, rows n gives the generalized n-gonal numbers: A001318 (n=5), A000217 (n=6), A085787 (n=7), A001082 (n=8), A118277 (n=9), A074377 (n=10), A195160 (n=11), A195162 (n=12), A195313 (n=13), A195818 (n=14), A277082 (n=15), A274978 (n=16), A303305 (n=17), A274979 (n=18), A303813 (n=19), A218864 (n=20), A303298 (n=21), A303299 (n=22), A303303 (n=23), A303814 (n=24), A303304 (n=25), A316724 (n=26), A316725 (n=27), A303812 (n=28), A303815 (n=29), A316729 (n=30).
Cf. A317302 (a similar table but with polygonal numbers).

Programs

  • Mathematica
    t[n_, r_] := PolygonalNumber[n, If[OddQ@ r, Floor[(r + 1)/2], -r/2]]; Table[ t[n - r, r], {n, 0, 11}, {r, 0, n}] // Flatten (* also *)
    (* to view the square array *)  Table[ t[n, r], {n, 0, 15}, {r, 0, 10}] // TableForm (* Robert G. Wilson v, Aug 08 2018 *)

Formula

T(n,k) = A194801(n-3,k) if n >= 3.

A317314 Multiples of 14 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 14, 3, 28, 5, 42, 7, 56, 9, 70, 11, 84, 13, 98, 15, 112, 17, 126, 19, 140, 21, 154, 23, 168, 25, 182, 27, 196, 29, 210, 31, 224, 33, 238, 35, 252, 37, 266, 39, 280, 41, 294, 43, 308, 45, 322, 47, 336, 49, 350, 51, 364, 53, 378, 55, 392, 57, 406, 59, 420, 61, 434, 63, 448, 65, 462, 67, 476, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 18-gonal numbers (A274979).
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 18-gonal numbers.

Crossrefs

Cf. A008596 and A005408 interleaved.
Column 14 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14), A317311 (k=15), A317312 (k=16), A317313 (k=17).
Cf. A274979.

Programs

  • Mathematica
    Table[4 n + 3 n (-1)^n, {n, 0, 80}] (* Wesley Ivan Hurt, Nov 25 2021 *)
  • PARI
    a(n) = if(n%2==0, return(14*n/2), return(n)) \\ Felix Fröhlich, Jul 26 2018
    
  • PARI
    concat(0, Vec(x*(1 + 14*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018

Formula

a(2n) = 14*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 29 2018: (Start)
G.f.: x*(1 + 14*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
a(n) = 4*n + 3*n*(-1)^n. - Wesley Ivan Hurt, Nov 25 2021
Multiplicative with a(2^e) = 7*2^e, and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 3*2^(2-s)). - Amiram Eldar, Oct 25 2023
Previous Showing 21-30 of 33 results. Next