cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 111 results. Next

A347460 Number of distinct possible alternating products of factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 5, 2, 6, 2, 2, 1, 10, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 10, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 10, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.

Examples

			The a(n) alternating products for n = 1, 4, 8, 12, 24, 30, 36, 48, 60, 120:
  1  4  8    12   24   30    36   48    60    120
     1  2    3    6    10/3  9    12    15    30
        1/2  3/4  8/3  5/6   4    16/3  20/3  40/3
             1/3  2/3  3/10  1    3     15/4  15/2
                  3/8  2/15  4/9  3/4   12/5  24/5
                  1/6        1/4  1/3   3/5   10/3
                             1/9  3/16  5/12  5/6
                                  1/12  4/15  8/15
                                        3/20  3/10
                                        1/15  5/24
                                              2/15
                                              3/40
                                              1/30
		

Crossrefs

Positions of 1's are 1 and A000040.
Positions of 2's appear to be A001358.
Positions of 3's appear to be A030078.
Dominates A038548, the version for reverse-alternating product.
Counting only integers gives A046951.
The even-length case is A072670.
The version for partitions (not factorizations) is A347461, reverse A347462.
The odd-length case is A347708.
The length-3 case is A347709.
A001055 counts factorizations (strict A045778, ordered A074206).
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A108917 counts knapsack partitions, ranked by A299702.
A276024 counts distinct positive subset-sums of partitions, strict A284640.
A292886 counts knapsack factorizations, by sum A293627.
A299701 counts distinct subset-sums of prime indices, positive A304793.
A301957 counts distinct subset-products of prime indices.
A304792 counts distinct subset-sums of partitions.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[altprod/@facs[n]]],{n,100}]

A353863 Number of integer partitions of n whose weak run-sums cover an initial interval of nonnegative integers.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 11, 16, 20, 24, 30, 43, 47, 62, 79, 94, 113, 143, 170, 211, 256, 307, 372, 449, 531, 648, 779, 926, 1100, 1323, 1562, 1864, 2190, 2595, 3053, 3611, 4242, 4977, 5834, 6825, 7973, 9344, 10844, 12641, 14699, 17072, 19822
Offset: 0

Views

Author

Gus Wiseman, Jun 04 2022

Keywords

Comments

A weak run-sum of a sequence is the sum of any consecutive constant subsequence. For example, the weak run-sums of (3,2,2,1) are {1,2,3,4}.
This is a kind of completeness property, cf. A126796.

Examples

			The a(1) = 1 through a(8) = 7 partitions:
  (1)  (11)  (21)   (211)   (311)    (321)     (3211)     (3221)
             (111)  (1111)  (2111)   (3111)    (4111)     (32111)
                            (11111)  (21111)   (22111)    (41111)
                                     (111111)  (31111)    (221111)
                                               (211111)   (311111)
                                               (1111111)  (2111111)
                                                          (11111111)
		

Crossrefs

For parts instead of weak run-sums we have A000009.
For multiplicities instead of weak run-sums we have A317081.
If weak run-sums are distinct we have A353865, the completion of A353864.
A003242 counts anti-run compositions, ranked by A333489, complement A261983.
A005811 counts runs in binary expansion.
A165413 counts distinct run-lengths in binary expansion, sums A353929.
A300273 ranks collapsible partitions, counted by A275870, comps A353860.
A353832 represents taking run-sums of a partition, compositions A353847.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices.
A353837 counts partitions with distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353861 counts distinct weak run-sums of prime indices.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    wkrs[y_]:=Union[Total/@Select[msubs[y],SameQ@@#&]];
    Table[Length[Select[IntegerPartitions[n],normQ[Rest[wkrs[#]]]&]],{n,0,15}]
  • PARI
    \\ isok(p) tests the partition.
    isok(p)={my(b=0, s=0, t=0); for(i=1, #p, if(p[i]<>t, t=p[i]; s=0); s += t; b = bitor(b, 1<<(s-1))); bitand(b,b+1)==0}
    a(n) = {my(r=0); forpart(p=n, r+=isok(p)); r} \\ Andrew Howroyd, Jan 15 2024

Extensions

a(31) onwards from Andrew Howroyd, Jan 15 2024

A366738 Number of semi-sums of integer partitions of n.

Original entry on oeis.org

0, 0, 1, 2, 5, 9, 17, 28, 46, 72, 111, 166, 243, 352, 500, 704, 973, 1341, 1819, 2459, 3277, 4363, 5735, 7529, 9779, 12685, 16301, 20929, 26638, 33878, 42778, 53942, 67583, 84600, 105270, 130853, 161835, 199896, 245788, 301890, 369208, 451046, 549002, 667370
Offset: 0

Views

Author

Gus Wiseman, Nov 06 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partitions of 6 and their a(6) = 17 semi-sums:
       (6) ->
      (51) -> 6
      (42) -> 6
     (411) -> 2,5
      (33) -> 6
     (321) -> 3,4,5
    (3111) -> 2,4
     (222) -> 4
    (2211) -> 2,3,4
   (21111) -> 2,3
  (111111) -> 2
		

Crossrefs

The non-binary version is A304792.
The strict non-binary version is A365925.
For prime indices instead of partitions we have A366739.
The strict case is A366741.
A000041 counts integer partitions, strict A000009.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A126796 counts complete partitions, ranks A325781, strict A188431.
A276024 counts positive subset-sums of partitions, strict A284640.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Total[Length[Union[Total/@Subsets[#,{2}]]]&/@IntegerPartitions[n]],{n,0,15}]

Extensions

More terms from Alois P. Heinz, Nov 06 2023

A325770 Number of distinct nonempty contiguous subsequences of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 7, 2, 3, 3, 5, 1, 6, 1, 5, 3, 3, 3, 8, 1, 3, 3, 7, 1, 6, 1, 5, 5, 3, 1, 9, 2, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 9, 1, 3, 5, 6, 3, 6, 1, 5, 3, 6, 1, 11, 1, 3, 5, 5, 3, 6, 1, 9, 4, 3, 1, 9, 3, 3, 3
Offset: 1

Views

Author

Gus Wiseman, May 20 2019

Keywords

Comments

After a(1) = 0, first differs from A305611 at a(42) = 6, A305611(42) = 7.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(84) = 9 distinct nonempty contiguous subsequences of (4,2,1,1) are (1), (2), (4), (1,1), (2,1), (4,2), (2,1,1), (4,2,1), (4,2,1,1).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Union[ReplaceList[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]],{_,s__,_}:>{s}]]],{n,30}]

Formula

a(n) = A335519(n) - 1.

Extensions

Name corrected by Gus Wiseman, Jun 27 2020

A301830 Number of factorizations of n into factors (greater than 1) of two kinds.

Original entry on oeis.org

1, 2, 2, 5, 2, 6, 2, 10, 5, 6, 2, 16, 2, 6, 6, 20, 2, 16, 2, 16, 6, 6, 2, 36, 5, 6, 10, 16, 2, 22, 2, 36, 6, 6, 6, 46, 2, 6, 6, 36, 2, 22, 2, 16, 16, 6, 2, 76, 5, 16, 6, 16, 2, 36, 6, 36, 6, 6, 2, 64, 2, 6, 16, 65, 6, 22, 2, 16, 6, 22, 2, 108, 2, 6, 16, 16, 6
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2018

Keywords

Comments

a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(6) = 6 factorizations: (2*3)*(), (3)*(2), (2)*(3), ()*(2*3), (6)*(), ()*(6).
The a(12) = 16 factorizations:
  ()*(2*2*3), (2)*(2*3), (3)*(2*2), (2*2)*(3), (2*3)*(2), (2*2*3)*(),
  ()*(2*6), (2)*(6), (6)*(2), (2*6)*(), ()*(3*4), (3)*(4), (4)*(3), (3*4)*(),
  ()*(12), (12)*().
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[facs[d]]*Length[facs[n/d]],{d,Divisors[n]}],{n,100}]
  • PARI
    MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
    seq(n)={MultEulerT(vector(n, i, 2))} \\ Andrew Howroyd, Nov 18 2018

Formula

Dirichlet g.f.: Product_{n > 1} 1/(1 - n^(-s))^2. [corrected by Ilya Gutkovskiy, Dec 14 2020]
a(p^n) = A000712(n) for prime p. - Andrew Howroyd, Nov 18 2018

A301957 Number of distinct subset-products of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 5, 1, 4, 4, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 4, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 8
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2018

Keywords

Comments

A subset-product of an integer partition y is a product of some submultiset of y. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Number of distinct values obtained when A003963 is applied to all divisors of n. - Antti Karttunen, Sep 05 2018

Examples

			The distinct subset-products of (4,2,1,1) are 1, 2, 4, and 8, so a(84) = 4.
The distinct subset-products of (6,3,2) are 1, 2, 3, 6, 12, 18, and 36, so a(195) = 7.
		

Crossrefs

Programs

  • Mathematica
    Table[If[n===1,1,Length[Union[Times@@@Subsets[Join@@Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]],{n,100}]
  • PARI
    up_to = 65537;
    A003963(n) = { n=factor(n); n[, 1]=apply(primepi, n[, 1]); factorback(n) }; \\ From A003963
    v003963 = vector(up_to,n,A003963(n));
    A301957(n) = { my(m=Map(),s,k=0,c); fordiv(n,d,if(!mapisdefined(m,s = v003963[d],&c), mapput(m,s,s); k++)); (k); }; \\ Antti Karttunen, Sep 05 2018

Extensions

More terms from Antti Karttunen, Sep 05 2018

A334968 Number of possible sums of subsequences (not necessarily contiguous) of the n-th composition in standard order (A066099).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 4, 4, 2, 4, 3, 5, 4, 5, 5, 5, 2, 4, 4, 6, 4, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 2, 4, 4, 6, 3, 7, 7, 7, 4, 7, 4, 7, 7, 7, 7, 7, 4, 6, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 2, 4, 4, 6, 4, 8, 8, 8, 4, 6, 6, 8, 6, 8, 8, 8, 4, 8, 6, 8, 6, 8, 8
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 139th composition is (4,2,1,1), with possible sums of subsequences {0,1,2,3,4,5,6,7,8}, so a(139) = 9.
Triangle begins:
  1
  2
  2 3
  2 4 4 4
  2 4 3 5 4 5 5 5
  2 4 4 6 4 6 6 6 4 6 6 6 6 6 6 6
  2 4 4 6 3 7 7 7 4 7 4 7 7 7 7 7 4 6 7 7 7 7 7 7 6 7 7 7 7 7 7 7
		

Crossrefs

Row lengths are A011782.
Dominated by A124771 (number of contiguous subsequences).
Dominates A333257 (the contiguous case).
Dominated by A334299 (number of subsequences).
Golomb rulers are counted by A169942 and ranked by A333222.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack partitions are counted by A108917 and ranked by A299702
Knapsack compositions are counted by A325676 and ranked by A333223.
Contiguous subsequence-sums are counted by A333224 and ranked by A333257.
Knapsack compositions are counted by A334268 and ranked by A334967.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[Total/@Subsets[stc[n]]]],{n,0,100}]

Formula

a(n) = A299701(A333219(n)).

A124770 Number of distinct nonempty subsequences for compositions in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 3, 3, 1, 3, 2, 5, 3, 5, 5, 4, 1, 3, 3, 5, 3, 5, 5, 7, 3, 5, 5, 8, 5, 8, 7, 5, 1, 3, 3, 5, 2, 6, 6, 7, 3, 6, 3, 8, 6, 7, 8, 9, 3, 5, 6, 8, 6, 8, 7, 11, 5, 8, 8, 11, 7, 11, 9, 6, 1, 3, 3, 5, 3, 6, 6, 7, 3, 5, 5, 9, 5, 9, 9, 9, 3, 6, 5, 9, 5, 7, 8, 11, 6, 9, 8, 11, 9, 11, 11, 11, 3, 5, 6, 8, 5, 9
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. - Gus Wiseman, Apr 03 2020

Examples

			Composition number 11 is 2,1,1; the nonempty subsequences are 1; 2; 1,1; 2,1; 2,1,1; so a(11) = 5.
The table starts:
  0
  1
  1 2
  1 3 3 3
  1 3 2 5 3 5 5 4
  1 3 3 5 3 5 5 7 3 5 5 8 5 8 7 5
From _Gus Wiseman_, Apr 03 2020: (Start)
If the k-th composition in standard order is c, then we say that the STC-number of c is k. The STC-numbers of the distinct subsequences of the composition with STC-number k are given in column k below:
  1  2  1  4  1  1  1  8  1  2   1   1   1   1   1   16  1   2   1   2
        3     2  2  3     4  10  2   4   2   2   3       8   4   4   4
              5  6  7     9      3   12  6   3   7       17  18  3   20
                                 5       5   6   15              9
                                 11      13  14                  19
(End)
		

Crossrefs

Row lengths are A011782.
Allowing empty subsequences gives A124771.
Dominates A333224, the version counting subsequence-sums instead of subsequences.
Compositions where every restriction to a subinterval has a different sum are counted by A169942 and A325677 and ranked by A333222. The case of partitions is counted by A325768 and ranked by A325779.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack compositions are counted by A325676 and A325687 and ranked by A333223. The case of partitions is counted by A325769 and ranked by A325778, for which the number of distinct consecutive subsequences is given by A325770.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[ReplaceList[stc[n],{_,s__,_}:>{s}]]],{n,0,100}] (* Gus Wiseman, Apr 03 2020 *)

Formula

a(n) = A124771(n) - 1. - Gus Wiseman, Apr 03 2020

A316314 Number of distinct nonempty-subset-averages of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 3, 1, 1, 4, 1, 4, 3, 3, 1, 5, 1, 3, 1, 4, 1, 5, 1, 1, 3, 3, 3, 5, 1, 3, 3, 5, 1, 7, 1, 4, 4, 3, 1, 6, 1, 4, 3, 4, 1, 5, 3, 5, 3, 3, 1, 8, 1, 3, 4, 1, 3, 7, 1, 4, 3, 7, 1, 7, 1, 3, 4, 4, 3, 7, 1, 6, 1, 3, 1, 8, 3, 3, 3, 5, 1, 7, 3, 4, 3, 3, 3, 7, 1, 4, 4, 5, 1, 7, 1, 5, 5
Offset: 1

Views

Author

Gus Wiseman, Jun 29 2018

Keywords

Comments

A rational number q is a nonempty-subset-average of an integer partition y if there exists a nonempty submultiset of y with average q.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(42) = 7 subset-averages of (4,2,1) are 1, 3/2, 2, 7/3, 5/2, 3, 4.
The a(72) = 7 subset-averages of (2,2,1,1,1) are 1, 5/4, 4/3, 7/5, 3/2, 5/3, 2.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Mean/@Rest[Subsets[primeMS[n]]]]],{n,100}]
  • PARI
    up_to = 65537;
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    v056239 = vector(up_to,n,A056239(n));
    A316314(n) = { my(m=Map(),s,k=0); fordiv(n,d,if((d>1)&&!mapisdefined(m,s = v056239[d]/bigomega(d)), mapput(m,s,s); k++)); (k); }; \\ Antti Karttunen, Sep 23 2018

Formula

a(n) = A316398(n) - 1.

Extensions

More terms from Antti Karttunen, Sep 23 2018

A347461 Number of distinct possible alternating products of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 10, 12, 16, 19, 23, 27, 34, 41, 49, 57, 67, 78, 91, 106, 125, 147, 166, 187, 215, 245, 277, 317, 357, 405, 460, 524, 592, 666, 740, 829, 928, 1032, 1147, 1273, 1399, 1555, 1713, 1892, 2087, 2298, 2523, 2783, 3070, 3383, 3724, 4104, 4504
Offset: 0

Views

Author

Gus Wiseman, Oct 06 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			Partitions representing each of the a(7) = 10 alternating products are:
     (7) -> 7
    (61) -> 6
    (52) -> 5/2
   (511) -> 5
    (43) -> 4/3
   (421) -> 2
  (4111) -> 4
   (331) -> 1
   (322) -> 3
  (3211) -> 3/2
		

Crossrefs

The version for alternating sum is A004526.
Counting only integers gives A028310, reverse A347707.
The version for factorizations is A347460, reverse A038548.
The reverse version is A347462.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A108917 counts knapsack partitions, ranked by A299702.
A122768 counts distinct submultisets of partitions.
A126796 counts complete partitions.
A293627 counts knapsack factorizations by sum.
A301957 counts distinct subset-products of prime indices.
A304792 counts subset-sums of partitions, positive A276024, strict A284640.
A304793 counts distinct positive subset-sums of prime indices.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[altprod/@IntegerPartitions[n]]],{n,0,30}]
Previous Showing 31-40 of 111 results. Next