cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 47 results. Next

A324572 Number of integer partitions of n whose multiplicities (where if x < y the multiplicity of x is counted prior to the multiplicity of y) are equal to the distinct parts in decreasing order.

Original entry on oeis.org

1, 1, 0, 0, 2, 0, 1, 0, 1, 1, 2, 0, 3, 0, 2, 0, 4, 1, 2, 1, 4, 1, 3, 1, 5, 3, 5, 1, 6, 2, 6, 1, 7, 2, 7, 2, 11, 4, 8, 3, 11, 5, 10, 4, 13, 5, 11, 5, 16, 8, 14, 5, 19, 8, 18, 6, 22, 8, 22, 7, 26, 10, 25, 8, 33, 12, 29, 11, 36, 13, 34, 12, 40, 16, 41, 14, 47, 17, 45, 16, 55
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

These are a kind of self-describing partitions (cf. A001462, A304679).
The Heinz numbers of these partitions are given by A324571.
The case where the distinct parts are taken in increasing order is counted by A033461, with Heinz numbers given by A109298.

Examples

			The first 19 terms count the following integer partitions:
   1: (1)
   4: (22)
   4: (211)
   6: (3111)
   8: (41111)
   9: (333)
  10: (511111)
  10: (322111)
  12: (6111111)
  12: (4221111)
  12: (33222)
  14: (71111111)
  14: (52211111)
  16: (811111111)
  16: (622111111)
  16: (4444)
  16: (442222)
  17: (43331111)
  18: (9111111111)
  18: (7221111111)
  19: (533311111)
		

Crossrefs

Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Union[#]==Length/@Split[#]&]],{n,0,30}]

Extensions

More terms from Alois P. Heinz, Mar 08 2019

A324525 Numbers divisible by prime(k)^k for each prime index k.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 27, 32, 36, 54, 64, 72, 81, 108, 125, 128, 144, 162, 216, 243, 250, 256, 288, 324, 432, 486, 500, 512, 576, 625, 648, 729, 864, 972, 1000, 1024, 1125, 1152, 1250, 1296, 1458, 1728, 1944, 2000, 2048, 2187, 2250, 2304, 2401, 2500, 2592
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

These are a kind of self-describing numbers (cf. A001462, A304679).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The prime signature of a number is the multiset of multiplicities (or exponents) in its prime factorization.
Also Heinz numbers of integer partitions where the multiplicity of k is at least k (A117144). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins as follows. For example, 36 = prime(1) * prime(1) * prime(2) * prime(2) is a term because the prime multiplicities are {2,2}, which are greater than or equal to the prime indices {1,2}.
    1: {}
    2: {1}
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   16: {1,1,1,1}
   18: {1,2,2}
   27: {2,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   54: {1,2,2,2}
   64: {1,1,1,1,1,1}
   72: {1,1,1,2,2}
   81: {2,2,2,2}
  108: {1,1,2,2,2}
  125: {3,3,3}
  128: {1,1,1,1,1,1,1}
		

Crossrefs

Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360.

Programs

  • Maple
    q:= n-> andmap(i-> i[2]>=numtheory[pi](i[1]), ifactors(n)[2]):
    select(q, [$1..3000])[];  # Alois P. Heinz, Mar 08 2019
  • Mathematica
    Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k>=PrimePi[p]]&]
    seq[max_] := Module[{ps = {2}, p, s = {1}, s1, s2, emax}, While[ps[[-1]]^Length[ps] < max, AppendTo[ps, NextPrime[ps[[-1]]]]]; Do[p = ps[[k]]; emax = Floor[Log[p, max]]; s1 = Join[{1}, p^Range[k, emax]]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= max &]; s = Union[s, s2], {k, 1, Length[ps]}]; s]; seq[3000] (* Amiram Eldar, Nov 23 2020 *)

Formula

Closed under multiplication.
Sum_{n>=1} 1/a(n) = Product_{k>=1} 1 + 1/(prime(k)^(k-1) * (prime(k)-1)) = 2.35782843100111139159... - Amiram Eldar, Nov 23 2020

A324524 Numbers where every prime index divides its multiplicity in the prime factorization. Numbers divisible by a power of prime(k)^k for each prime index k.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 125, 128, 144, 162, 250, 256, 288, 324, 500, 512, 576, 648, 729, 1000, 1024, 1125, 1152, 1296, 1458, 2000, 2048, 2250, 2304, 2401, 2592, 2916, 4000, 4096, 4500, 4608, 4802, 5184, 5832, 6561, 8000, 8192, 9000, 9216
Offset: 1

Views

Author

Gus Wiseman, Mar 07 2019

Keywords

Comments

These are a kind of self-describing numbers (cf. A001462, A304679).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The prime signature of a number is the multiset of multiplicities (or exponents) in its prime factorization.
Also Heinz numbers of integer partitions in which every part divides its multiplicity (counted by A001156). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of elements of A062457.

Examples

			The sequence of terms together with their prime indices begins as follows. For example, we have 18: {1,2,2} because 18 = prime(1) * prime(2) * prime(2).
    1: {}
    2: {1}
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   16: {1,1,1,1}
   18: {1,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   64: {1,1,1,1,1,1}
   72: {1,1,1,2,2}
   81: {2,2,2,2}
  125: {3,3,3}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  162: {1,2,2,2,2}
  250: {1,3,3,3}
  256: {1,1,1,1,1,1,1,1}
		

Crossrefs

Range of values of A090884.
Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360.

Programs

  • Maple
    q:= n-> andmap(i-> irem(i[2], numtheory[pi](i[1]))=0, ifactors(n)[2]):
    select(q, [$1..10000])[];  # Alois P. Heinz, Mar 08 2019
  • Mathematica
    Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>Divisible[k,PrimePi[p]]]&]
    v = Join[{1}, Prime[(r = Range[10])]^r]; n = Length[v]; vmax = 10^4; s = {1}; Do[v1 = v[[k]]; rmax = Floor[Log[v1, vmax]]; s1 = v1^Range[0, rmax]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= vmax &]; s = Union[s, s2], {k, 2, n}]; Length[s] (* Amiram Eldar, Sep 30 2020 *)

Formula

Closed under multiplication.
Sum_{n>=1} 1/a(n) = Product_{k>=1} 1/(1-prime(k)^(-k)) = 2.26910478689594012492... - Amiram Eldar, Sep 30 2020

A324571 Numbers whose ordered prime signature is equal to the set of distinct prime indices in decreasing order.

Original entry on oeis.org

1, 2, 9, 12, 40, 112, 125, 352, 360, 675, 832, 1008, 2176, 2401, 3168, 3969, 4864, 7488, 11776, 14000, 19584, 29403, 29696, 43776, 44000, 63488, 75600, 104000, 105984, 123201, 151552, 161051, 214375, 237600, 267264, 272000, 335872, 496125, 561600, 571392, 608000
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

These are a kind of self-describing numbers (cf. A001462, A304679). The increasing case is A109298.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The ordered prime signature (A124010) is the sequence of multiplicities (or exponents) in a number's prime factorization, taken in order of the prime base.
Also Heinz numbers of the integer partitions counted by A324572. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Each finite set of positive integers determines a unique term with those prime indices. For example, corresponding to {1,2,4,5} is 1397088 = prime(1)^5 * prime(2)^4 * prime(4)^2 * prime(5)^1.

Examples

			The sequence of terms together with their prime indices begins as follows. For example, we have 40: {1,1,1,3} because 40 = prime(1) * prime(1) * prime(1) * prime(3).
      1: {}
      2: {1}
      9: {2,2}
     12: {1,1,2}
     40: {1,1,1,3}
    112: {1,1,1,1,4}
    125: {3,3,3}
    352: {1,1,1,1,1,5}
    360: {1,1,1,2,2,3}
    675: {2,2,2,3,3}
    832: {1,1,1,1,1,1,6}
   1008: {1,1,1,1,2,2,4}
   2176: {1,1,1,1,1,1,1,7}
   2401: {4,4,4,4}
   3168: {1,1,1,1,1,2,2,5}
   3969: {2,2,2,2,4,4}
   4864: {1,1,1,1,1,1,1,1,8}
   7488: {1,1,1,1,1,1,2,2,6}
  11776: {1,1,1,1,1,1,1,1,1,9}
  14000: {1,1,1,1,3,3,3,4}
  19584: {1,1,1,1,1,1,1,2,2,7}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],Reverse[PrimePi/@First/@If[#==1,{},FactorInteger[#]]]==Last/@If[#==1,{},FactorInteger[#]]&]

A276079 Numbers n such that prime(k)^(k+1) divides n for some k.

Original entry on oeis.org

4, 8, 12, 16, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 135, 136, 140, 144, 148, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 243, 244, 248, 252, 256, 260, 264, 268, 270, 272
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Comments

The asymptotic density of this sequence is 1 - Product_{i>=1} 1-prime(i)^(-1-i) = 0.2789766... - Amiram Eldar, Oct 21 2020

Examples

			625 = 5*5*5*5 = prime(3)^4 so it is divisible by prime(3)^(3+1), and thus 625 is included in the sequence.
		

Crossrefs

Positions of nonzeros in A276077.
Complement: A276078.
Cf. A000040, A000720, A008586 (a subsequence).
Differs from its subsequence A100716 for the first time at n=175, where a(175) = 625, while that value is missing from A100716.

Programs

  • Python
    from sympy import primepi, isprime, primefactors, factorint
    def a028234(n):
        f=factorint(n)
        minf = min(f)
        return 1 if n==1 else n//(minf**f[minf])
    def a067029(n):
        f=factorint(n)
        return 0 if n==1 else f[min(f)]
    def a049084(n): return primepi(n) if isprime(n) else 0
    def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
    def a(n): return 0 if n==1 else a(a028234(n)) + (1 if a067029(n) > a055396(n) else 0)
    print([n for n in range(1, 301) if a(n)!=0]) # Indranil Ghosh, Jun 21 2017

A324570 Numbers where the sum of distinct prime indices (A066328) is equal to the number of prime factors counted with multiplicity (A001222).

Original entry on oeis.org

1, 2, 9, 12, 18, 40, 100, 112, 125, 240, 250, 352, 360, 392, 405, 540, 600, 672, 675, 810, 832, 900, 1008, 1125, 1350, 1372, 1500, 1512, 1701, 1875, 1936, 2112, 2176, 2240, 2250, 2268, 2352, 2401, 3168, 3402, 3528, 3750, 3969, 4752, 4802, 4864, 4992, 5292
Offset: 1

Views

Author

Gus Wiseman, Mar 07 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. For example, 540 = prime(1)^2 * prime(2)^3 * prime(3)^1 has sum of distinct prime indices 1 + 2 + 3 = 6, while the number of prime factors counted with multiplicity is 2 + 3 + 1 = 6, so 540 belongs to the sequence.
Also Heinz numbers of the integer partitions counted by A114638. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    9: {2,2}
   12: {1,1,2}
   18: {1,2,2}
   40: {1,1,1,3}
  100: {1,1,3,3}
  112: {1,1,1,1,4}
  125: {3,3,3}
  240: {1,1,1,1,2,3}
  250: {1,3,3,3}
  352: {1,1,1,1,1,5}
  360: {1,1,1,2,2,3}
  392: {1,1,1,4,4}
  405: {2,2,2,2,3}
  540: {1,1,2,2,2,3}
  600: {1,1,1,2,3,3}
  672: {1,1,1,1,1,2,4}
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    q:= n-> is(add(pi(p), p=factorset(n))=bigomega(n)):
    select(q, [$1..5600])[];  # Alois P. Heinz, Mar 07 2019
  • Mathematica
    Select[Range[1000],Total[PrimePi/@First/@FactorInteger[#]]==PrimeOmega[#]&]

Formula

A066328(a(n)) = A001222(a(n)).

A054744 p-full numbers: numbers such that if any prime p divides it, then so does p^p.

Original entry on oeis.org

1, 4, 8, 16, 27, 32, 64, 81, 108, 128, 216, 243, 256, 324, 432, 512, 648, 729, 864, 972, 1024, 1296, 1728, 1944, 2048, 2187, 2592, 2916, 3125, 3456, 3888, 4096, 5184, 5832, 6561, 6912, 7776, 8192, 8748, 10368, 11664, 12500, 13824, 15552, 15625, 16384
Offset: 1

Views

Author

James Sellers, Apr 22 2000

Keywords

Comments

A027748(a(n),k) <= A124010(a(n),k), 1<=k<=A001221(a(n)). [Reinhard Zumkeller, Apr 28 2012]
Heinz numbers of integer partitions where the multiplicity of each part k is at least prime(k). These partitions are counted by A325132. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 02 2019

Examples

			8 is an element because 8 = 2^3 and 2<=3, while 25 is not an element because 25 = 5^2 and 5>2.
From _Gus Wiseman_, Apr 02 2019: (Start)
The sequence of terms together with their prime indices begins:
    1: {}
    4: {1,1}
    8: {1,1,1}
   16: {1,1,1,1}
   27: {2,2,2}
   32: {1,1,1,1,1}
   64: {1,1,1,1,1,1}
   81: {2,2,2,2}
  108: {1,1,2,2,2}
  128: {1,1,1,1,1,1,1}
  216: {1,1,1,2,2,2}
  243: {2,2,2,2,2}
  256: {1,1,1,1,1,1,1,1}
  324: {1,1,2,2,2,2}
  432: {1,1,1,1,2,2,2}
  512: {1,1,1,1,1,1,1,1,1}
  648: {1,1,1,2,2,2,2}
  729: {2,2,2,2,2,2}
  864: {1,1,1,1,1,2,2,2}
  972: {1,1,2,2,2,2,2}
(End)
		

Crossrefs

Programs

  • Haskell
    a054744 n = a054744_list !! (n-1)
    a054744_list = filter (\x -> and $
       zipWith (<=) (a027748_row x) (map toInteger $ a124010_row x)) [1..]
    -- Reinhard Zumkeller, Apr 28 2012
  • Mathematica
    Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k>=p]&] (* Gus Wiseman, Apr 02 2019 *)

Formula

If n = Product p_i^e_i then p_i<=e_i for all i.
Sum_{n>=1} 1/a(n) = Product_{p prime} 1 + 1/(p^(p-1)*(p-1)) = 1.58396891058853238595.... - Amiram Eldar, Oct 24 2020

A276077 Number of distinct prime factors p of n such that p^(1+A000720(p)) is a divisor of n, where A000720(p) gives the index of prime p, 1 for 2, 2 for 3, 3 for 5, and so on.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Examples

			For n = 2 (= prime(1)), 2 is not divisible by 2^(1+1), thus a(2) = 0.
For n = 3 (= prime(3)), 3 is not divisible by 3^(2+1), thus a(3) = 0.
For n = 4 (= prime(1)^2), 4 is divisible by 2^(1+1), and there are no other prime factors apart from 2, thus a(4) = 1.
For n = 108 = 2^2 * 3^3, it is divisible both by 2^(1+1) and 3^(2+1), thus a(108) = 2.
For n = 625 = prime(3)^4, it is divisible by 5^(3+1), thus a(625) = 1.
		

Crossrefs

Cf. A276078 (positions of zeros), A276079 (nonzeros), also A276076.
Differs from A129251 for the first time at n=625, where a(625) = 1, while A129251(625) = 0.

Programs

  • Mathematica
    f[p_, e_] := If[PrimePi[p] < e, 1, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 30 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); sum(i = 1, #f~, primepi(f[i,1]) < f[i,2]);} \\ Amiram Eldar, Sep 30 2023
  • Python
    from sympy import primepi, isprime, primefactors, factorint
    def a028234(n):
        f=factorint(n)
        return 1 if n==1 else n//(min(f)**f[min(f)])
    def a067029(n):
        f=factorint(n)
        return 0 if n==1 else f[min(f)]
    def a049084(n): return primepi(n)*(isprime(n))
    def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
    def a(n):
        if n==1: return 0
        val = a(a028234(n))
        if a067029(n) > a055396(n):
            val += 1
        return val
    print([a(n) for n in range(1, 201)]) # Indranil Ghosh, Jun 21 2017
    
  • Scheme
    (define (A276077 n) (if (= 1 n) 0 (+ (A276077 (A028234 n)) (if (> (A067029 n) (A055396 n)) 1 0))))
    

Formula

This formula uses Iverson bracket, which gives 1 as its value if the condition given inside [ ] is true and 0 otherwise:
a(1) = 0, for n > 1, a(n) = a(A028234(n)) + [A067029(n) > A055396(n)].
Other identities. For all n >= 1:
a(A276076(n)) = 0.
From Amiram Eldar, Sep 30 2023: (Start)
Additive with a(p^e) = 1 if primepi(p) < e, and 0 otherwise.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/prime(k)^(k+1) = 0.2886971166123417096098... . (End)

A324588 Heinz numbers of integer partitions of n into perfect squares (A001156).

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 23, 28, 32, 46, 49, 53, 56, 64, 92, 97, 98, 106, 112, 128, 151, 161, 184, 194, 196, 212, 224, 227, 256, 302, 311, 322, 343, 368, 371, 388, 392, 419, 424, 448, 454, 512, 529, 541, 604, 622, 644, 661, 679, 686, 736, 742, 776, 784, 827, 838
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of elements of A011757.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   4: {1,1}
   7: {4}
   8: {1,1,1}
  14: {1,4}
  16: {1,1,1,1}
  23: {9}
  28: {1,1,4}
  32: {1,1,1,1,1}
  46: {1,9}
  49: {4,4}
  53: {16}
  56: {1,1,1,4}
  64: {1,1,1,1,1,1}
  92: {1,1,9}
  97: {25}
  98: {1,4,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],And@@Cases[FactorInteger[#],{p_,_}:>IntegerQ[Sqrt[PrimePi[p]]]]&]

A325128 Numbers in whose prime factorization the exponent of prime(k) is less than k for all prime indices k.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions where each part k appears fewer than k times. Such partitions are counted by A087153.
The asymptotic density of this sequence is Product_{k>=1} (1 - 1/prime(k)^k) = 0.44070243286030291209... - Amiram Eldar, Feb 02 2021

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   5: {3}
   7: {4}
  11: {5}
  13: {6}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  29: {10}
  31: {11}
  33: {2,5}
  35: {3,4}
  37: {12}
  39: {2,6}
  41: {13}
  43: {14}
  47: {15}
  49: {4,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k
    				
Previous Showing 11-20 of 47 results. Next