cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A144331 Triangle b(n,k) for n >= 0, 0 <= k <= 2n, read by rows. See A144299 for definition and properties.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 3, 3, 0, 0, 0, 1, 6, 15, 15, 0, 0, 0, 0, 1, 10, 45, 105, 105, 0, 0, 0, 0, 0, 1, 15, 105, 420, 945, 945, 0, 0, 0, 0, 0, 0, 1, 21, 210, 1260, 4725, 10395, 10395, 0, 0, 0, 0, 0, 0, 0, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 07 2008

Keywords

Comments

Although this entry is the last of the versions of the underlying triangle to be added to the OEIS, for some applications it is the most important.
Row n has 2n+1 entries.
A001498 has a b-file.

Examples

			Triangle begins:
  1
  0 1 1
  0 0 1 3 3
  0 0 0 1 6 15 15
  0 0 0 0 1 10 45 105 105
  0 0 0 0 0  1 15 105 420  945  945
  0 0 0 0 0  0  1  21 210 1260 4725 10395 10395
  ...
		

Crossrefs

Row sums give A001515, column sums A000085.
Other versions of this triangle are given in A001497, A001498, A111924 and A100861.
See A144385 for a generalization.

Programs

  • Haskell
    a144331 n k = a144331_tabf !! n !! k
    a144331_row n = a144331_tabf !! n
    a144331_tabf = iterate (\xs ->
      zipWith (+) ([0] ++ xs ++ [0]) $ zipWith (*) (0:[0..]) ([0,0] ++ xs)) [1]
    -- Reinhard Zumkeller, Nov 24 2014
    
  • Magma
    A144331:= func< n,k | k le n-1 select 0 else Factorial(k)/(2^(k-n)*Factorial(k-n)*Factorial(2*n-k)) >;
    [A144331(n,k): k in [0..2*n], n in [0..12]]; // G. C. Greubel, Oct 04 2023
    
  • Mathematica
    Flatten[Table[PadLeft[Table[(n+k)!/(2^k*k!*(n-k)!), {k,0,n}], 2*n+1, 0], {n,0,12}]] (* Jean-François Alcover, Oct 14 2011 *)
  • SageMath
    def A144331(n, k): return 0 if kA144331(n,k) for k in range(2*n+1)] for n in range(13)]) # G. C. Greubel, Oct 04 2023

Formula

E.g.f.: Sum_{n >= 0} Sum_{k = 0..2n} b(n,k) y^n * x^k/k! = exp(x*y*(1 + x/2)).
b(n, k) = 2^(n-k)*k!/((2*n-k)!*(k-n)!).
Sum_{k=0..2*n} b(n, k) = A001515(n).
Sum_{n >= 0} b(n, k) = A000085(k).
From G. C. Greubel, Oct 04 2023: (Start)
T(n, k) = 0 for 0 <= k <= n-1, otherwise T(n, k) = k!/(2^(k-n)*(k-n)!*(2*n-k)!) for n <= k <= 2*n.
Sum_{k=0..2*n} (-1)^k * T(n, k) = A278990(n). (End)

A190823 Number of permutations of 2 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 2.

Original entry on oeis.org

1, 0, 0, 1, 10, 99, 1146, 15422, 237135, 4106680, 79154927, 1681383864, 39034539488, 983466451011, 26728184505750, 779476074425297, 24281301468714902, 804688068731837874, 28269541494090294129, 1049450257149017422000, 41050171013933837206545
Offset: 0

Views

Author

R. H. Hardin, May 21 2011

Keywords

Comments

From Gus Wiseman, Feb 27 2019: (Start)
Also the number of 2-uniform set partitions of {1..2n} such that no block has its two vertices differing by less than 3. For example, the a(4) = 10 set partitions are:
{{1,4}, {2,6}, {3,7}, {5,8}}
{{1,4}, {2,7}, {3,6}, {5,8}}
{{1,5}, {2,6}, {3,7}, {4,8}}
{{1,5}, {2,6}, {3,8}, {4,7}}
{{1,5}, {2,7}, {3,6}, {4,8}}
{{1,5}, {2,8}, {3,6}, {4,7}}
{{1,6}, {2,5}, {3,7}, {4,8}}
{{1,6}, {2,5}, {3,8}, {4,7}}
{{1,7}, {2,5}, {3,6}, {4,8}}
{{1,8}, {2,5}, {3,6}, {4,7}}
(End)

Examples

			All solutions for n=4 (read downwards):
  1    1    1    1    1    1    1    1    1    1
  2    2    2    2    2    2    2    2    2    2
  3    3    3    3    3    3    3    3    3    3
  4    4    4    4    1    4    4    1    4    4
  1    1    2    1    4    2    1    4    2    2
  3    3    1    2    2    3    2    3    1    3
  2    4    4    4    3    4    3    2    3    1
  4    2    3    3    4    1    4    4    4    4
		

Crossrefs

Distance of 1 instead of 2 gives |A000806|.
Column k=3 of A293157.
Cf. A000699, A001147 (2-uniform set partitions), A003436, A005493, A011968, A170941, A278990 (distance 2+ version), A306386 (cyclical version).

Programs

  • Magma
    I:=[1,0,0,1,10,99]; [n le 5 select I[n] else 2*n*Self(n-1) -2*(3*n-8)*Self(n-2) +2*(3*n-11)*Self(n-3) -2*(n-5)*Self(n-4) -Self(n-5): n in [1..40]]; // G. C. Greubel, Dec 03 2023
    
  • Mathematica
    a[0]=1; a[1]=0; a[2]=0; a[3]=1; a[4]=10; a[5]=99; a[n_] := a[n] = (2*n+2) a[n-1] - (6*n-10) a[n-2] + (6*n-16) a[n-3] - (2*n-8) a[n-4] - a[n-5]; Array[a, 20, 0] (* based on Sullivan's formula, Giovanni Resta, Mar 20 2017 *)
    dtui[{}]:={{}};dtui[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@dtui[Complement[set,s]]]/@Table[{i,j},{j,Select[set,#>i+2&]}];
    Table[Length[dtui[Range[n]]],{n,0,12,2}] (* Gus Wiseman, Feb 27 2019 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A190823
        if (n<6): return (1,0,0,1,10,99)[n]
        else: return 2*(n+1)*a(n-1) - 2*(3*n-5)*a(n-2) + 2*(3*n-8)*a(n-3) - 2*(n-4)*a(n-4) - a(n-5)
    [a(n) for n in range(41)] # G. C. Greubel, Dec 03 2023

Formula

a(n) = 2*(n+1)*a(n-1) - 2*(3*n-5)*a(n-2) + 2*(3*n-8)*a(n-3) - 2*(n-4)*a(n-4) - a(n-5) (proved). - Everett Sullivan, Mar 16 2017
a(n) ~ 2^(n+1/2) * n^n / exp(n+2), based on Sullivan's formula. - Vaclav Kotesovec, Mar 21 2017

Extensions

a(16)-a(20) (using Everett Sullivan's formula) from Giovanni Resta, Mar 20 2017
a(0)=1 prepended by Alois P. Heinz, Oct 17 2017

A306386 Number of chord diagrams with n chords all having arc length at least 3.

Original entry on oeis.org

1, 0, 0, 1, 7, 68, 837, 11863, 189503, 3377341, 66564396, 1439304777, 33902511983, 864514417843, 23735220814661, 698226455579492, 21914096529153695, 731009183350476805, 25829581529376423945, 963786767538027630275, 37871891147795243899204, 1563295398737378236910447
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2019

Keywords

Comments

A cyclical form of A190823.
Also the number of 2-uniform set partitions of {1...2n} such that, when the vertices are arranged uniformly around a circle, no block has its two vertices separated by an arc length of less than 3.

Examples

			The a(8) = 7 2-uniform set partitions with all arc lengths at least 3:
  {{1,4},{2,6},{3,7},{5,8}}
  {{1,4},{2,7},{3,6},{5,8}}
  {{1,5},{2,6},{3,7},{4,8}}
  {{1,5},{2,6},{3,8},{4,7}}
  {{1,5},{2,7},{3,6},{4,8}}
  {{1,6},{2,5},{3,7},{4,8}}
  {{1,6},{2,5},{3,8},{4,7}}
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<8, [1, 0$2, 1, 7, 68, 837, 11863][n+1],
          ((8*n^4-64*n^3+142*n^2-66*n+109)    *a(n-1)
          -(24*n^4-248*n^3+870*n^2-1106*n+241)*a(n-2)
          +(24*n^4-264*n^3+982*n^2-1270*n+145)*a(n-3)
          -(8*n^4-96*n^3+374*n^2-486*n+33)    *a(n-4)
          -(4*n^3-24*n^2+39*n-2)              *a(n-5))/(4*n^3-36*n^2+99*n-69))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Feb 27 2019
  • Mathematica
    dtui[{},]:={{}};dtui[set:{i,___},n_]:=Join@@Function[s,Prepend[#,s]&/@dtui[Complement[set,s],n]]/@Table[{i,j},{j,Switch[i,1,Select[set,3<#i+2&]]}];
    Table[Length[dtui[Range[n],n]],{n,0,12,2}]

Formula

a(n) is even <=> n in { A135042 }. - Alois P. Heinz, Feb 27 2019

Extensions

a(10)-a(16) from Alois P. Heinz, Feb 26 2019
a(17)-a(21) from Alois P. Heinz, Feb 27 2019

A291843 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 0, 1, 5, 3, 36, 33, 2, 329, 388, 72, 3655, 5101, 1545, 64, 47844, 75444, 30700, 3023, 20, 721315, 1248911, 621937, 97200, 3134, 12310199, 22964112, 13269140, 2793713, 180936, 1656, 234615096, 465344235, 301698501, 78495574, 7733807, 205620, 352, 4939227215, 10316541393, 7336995966, 2239771686, 293933437, 13977294, 140660
Offset: 0

Views

Author

Gheorghe Coserea, Oct 23 2017

Keywords

Comments

Row n > 0 contains floor((2*n+1)/3) terms.

Examples

			A(x;t) = 1 + x^2 + (5 + 3*t)*x^3 + (36 + 33*t + 2*t^2)*x^4 + ...
Triangle starts:
n\k  [0]        [1]        [2]        [3]       [4]      [5]     [6]
[0]  1;
[1]  0;
[2]  1;
[3]  5,         3;
[4]  36,        33,        2;
[5]  329,       388,       72;
[6]  3655,      5101,      1545,      64;
[7]  47844,     75444,     30700,     3023,     20;
[8]  721315,    1248911,   621937,    97200,    3134;
[9]  12310199,  22964112,  13269140,  2793713,  180936,  1656;
[10] 234615096, 465344235, 301698501, 78495574, 7733807, 205620, 352;
[11] ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 11; Clear[Z, Zp]; Z[_] = 0;
    Do[
    Zp[t_] = Z'[t] + O[t]^n // Normal;
    Z[t_] = (-(1/(2L t (1+t)))) (-1 + t - 2L t + 2L^2 t^4 (1 + Zp[t]) + t^2 (1 + 2L + 2L Zp[t]) + L t^3 (3 + 2L + 2(1+L) Zp[t]) + Sqrt[4L t (1+t) (1 + L t)(-1 + t + 2L t^2 + 2(-1 + L) t^2 Zp[t]) + (-1 + t (1 + t + L (-2 + t (2 + t (3 + 2L (1+t))))) + 2L t^2 (1+t)(1 + L t) Zp[t])^2]) + O[t]^n // Normal // Simplify,
    {n, nmax+1}];
    CoefficientList[#, L]& /@ CoefficientList[Z[t], t] /. {} -> {0} // Flatten (* Jean-François Alcover, Oct 23 2018 *)
  • PARI
    A291843_ser(N, t='t) = {
      my(x='x+O('x^N), y=1, y1=0, n=1,
      dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
      while (n++,
       y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
            (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
       if (y1 == y, break); y = y1;); y;
    };
    concat(apply(p->if(p === Pol(0,'t), [0], Vecrev(p)), Vec(A291843_ser(12))))
    \\ test: y=A291843_ser(56); 2*x^2*deriv(y,x) == (1-x-2*t*x^2)*((1+x)*y-1)/(1-t + t*(1+x)*y) - y*x/(1+t*x)

Formula

y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies 2*x^2*deriv(y,x) = (1-x-2*t*x^2)*((1+x)*y-1)/(1-t + t*(1+x)*y) - y*x/(1+t*x), with y(0;t)=1, where P_n(t) = Sum_{k=0..floor((2*n-2)/3)} T(n,k)*t^k for n > 0. (see eqn. (24) in Molinari link)
A278990(n) = P_n(0), A294166(n) = P_n(1), A082582(n) = P_n(-1) for n > 1.
A267827(n) = T(3*n+1, 2*n), n > 0. - Danny Rorabaugh, Nov 10 2017

A308356 A(n,k) = (1/k!) * Sum_{i_1=1..n} Sum_{i_2=1..n} ... Sum_{i_k=1..n} (-1)^(i_1 + i_2 + ... + i_k) * multinomial(i_1 + i_2 + ... + i_k; i_1, i_2, ..., i_k), square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 1, 0, 1, 0, -1, 1, -1, 1, 0, 1, 5, 5, 0, 1, 0, -1, 36, -120, 15, -1, 1, 0, 1, 329, 6286, 2380, 56, 0, 1, 0, -1, 3655, -557991, 1056496, -52556, 203, -1, 1, 0, 1, 47844, 74741031, 1006985994, 197741887, 1192625, 757, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, May 21 2019

Keywords

Examples

			For (n,k) = (3,2), (1/2) * (Sum_{i=1..3} x^i/i!)^2 = (1/2) * (x + x^2/2 + x^3/6)^2 = (-x)^2/2 + (-3)*(-x)^3/6 + 7*(-x)^4/24 + (-10)*(-x)^5/120 + 10*(-x)^6/720. So A(3,2) = 1 - 3 + 7 - 10 + 10 = 5.
Square array begins:
   1,  0,   0,       0,           0,                0, ...
   1, -1,   1,      -1,           1,               -1, ...
   1,  0,   1,       5,          36,              329, ...
   1, -1,   5,    -120,        6286,          -557991, ...
   1,  0,  15,    2380,     1056496,       1006985994, ...
   1, -1,  56,  -52556,   197741887,   -2063348839223, ...
   1,  0, 203, 1192625, 38987482590, 4546553764660831, ...
		

Crossrefs

Columns k=0..4 give A000012, (-1)*A000035, A307349, (-1)*A307350, A307351.
Rows n=0..5 give A000007, A033999, A278990, A308363, A308389, A308390.
Main diagonal gives A308327.
Cf. A144510.

Formula

A(n,k) = Sum_{i=k..k*n} b(i) where Sum_{i=k..k*n} b(i) * (-x)^i/i! = (1/k!) * (Sum_{i=1..n} x^i/i!)^k.

A322402 Triangle read by rows: The number of chord diagrams with n chords and k topologically connected components, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 4, 6, 5, 0, 27, 36, 28, 14, 0, 248, 310, 225, 120, 42, 0, 2830, 3396, 2332, 1210, 495, 132, 0, 38232, 44604, 29302, 14560, 6006, 2002, 429, 0, 593859, 678696, 430200, 204540, 81900, 28392, 8008, 1430, 0, 10401712, 11701926, 7204821, 3289296, 1263780, 431256, 129948, 31824, 4862
Offset: 0

Views

Author

R. J. Mathar, Dec 06 2018

Keywords

Comments

If all subsets are allowed instead of just pairs (chords), we get A324173. The rightmost column is A000108 (see Riordan). - Gus Wiseman, Feb 27 2019

Examples

			From _Gus Wiseman_, Feb 27 2019: (Start)
Triangle begins:
  1
  0      1
  0      1      2
  0      4      6      5
  0     27     36     28     14
  0    248    310    225    120     42
  0   2830   3396   2332   1210    495    132
  0  38232  44604  29302  14560   6006   2002    429
  0 593859 678696 430200 204540  81900  28392   8008   1430
Row n = 3 counts the following chord diagrams (see link for pictures):
  {{1,3},{2,5},{4,6}}  {{1,2},{3,5},{4,6}}  {{1,2},{3,4},{5,6}}
  {{1,4},{2,5},{3,6}}  {{1,3},{2,4},{5,6}}  {{1,2},{3,6},{4,5}}
  {{1,4},{2,6},{3,5}}  {{1,3},{2,6},{4,5}}  {{1,4},{2,3},{5,6}}
  {{1,5},{2,4},{3,6}}  {{1,5},{2,3},{4,6}}  {{1,6},{2,3},{4,5}}
                       {{1,5},{2,6},{3,4}}  {{1,6},{2,5},{3,4}}
                       {{1,6},{2,4},{3,5}}
(End)
		

Crossrefs

Cf. A000699 (k = 1 column), A001147 (row sums), A000108 (diagonal), A002694 (subdiagonal k = n - 1).

Formula

The g.f. satisfies g(z,w) = 1+w*A000699(w*g^2), where A000699(z) is the g.f. of A000699.

Extensions

Offset changed to 0 by Gus Wiseman, Feb 27 2019

A278991 a(n) is the number of simple linear diagrams with n+1 chords.

Original entry on oeis.org

0, 1, 3, 24, 211, 2325, 30198, 452809, 7695777, 146193678, 3069668575, 70595504859, 1764755571192, 47645601726541, 1381657584006399, 42829752879449400, 1413337528735664887, 49465522112961344241, 1830184115528550306438, 71375848864779552073957
Offset: 0

Views

Author

N. J. A. Sloane, Dec 07 2016

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[2] = 3; a[n_] := a[n] = (2 n - 1) a[n - 1] + (4 n - 3) a[n - 2] + (2 n - 4) a[n - 3]; Table[a@ n, {n, 0, 19}] (* Michael De Vlieger, Dec 10 2016 *)
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1]=1; a[2]=3; a[3]=24;
      for (n=4, N, a[n] = (2*n-1)*a[n-1] + (4*n-3)*a[n-2] + (2*n-4)*a[n-3]);
      concat(0, a);
    };
    seq(20) \\ Gheorghe Coserea, Dec 10 2016
    
  • PARI
    N = 20; x = 'x + O('x^N);
    concat(0, Vec(serlaplace((1-sqrt(1-2*x))*(1-2*x)^(-3/2)*exp(-1-x+sqrt(1-2*x))))) \\ Gheorghe Coserea, Dec 10 2016

Formula

E.g.f.: (1-sqrt(1-2*x))*(1-2*x)^(-3/2)*exp(-1-x+sqrt(1-2*x)).
a(n) ~ 2^(n+3/2) * n^(n+1) / exp(n+3/2). - Vaclav Kotesovec, Dec 07 2016
a(n) = (2*n-1)*a(n-1) + (4*n-3)*a(n-2) + (2*n-4)*a(n-3). - Gheorghe Coserea, Dec 10 2016

Extensions

Offset corrected by Gheorghe Coserea, Dec 10 2016

A321666 Number of arrangements of n 1's, n 2's, ..., n n's avoiding equal consecutive terms and introduced in ascending order.

Original entry on oeis.org

1, 1, 1, 29, 94376, 66218360625, 16985819072511102549, 2421032324142610480402567434373, 271259741131895052775392614041761701799270286, 32119646666355552112999645991677870426882424139287301894021793
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2018

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = sum(i=n, n^2, i!*polcoef(sum(j=1, n, (-1)^(n-j)*binomial(n-1, j-1)*x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 27 2019

Formula

a(n) = A321634(n)/n!.
a(n) ~ exp(5/12) * n^((n-1)*(2*n-1)/2) / (2*Pi)^(n/2). - Vaclav Kotesovec, Nov 24 2018

A335432 Number of anti-run permutations of the prime indices of Mersenne numbers A000225(n) = 2^n - 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 6, 2, 6, 2, 36, 1, 6, 6, 24, 1, 24, 1, 240, 6, 24, 2, 1800, 6, 6, 6, 720, 6, 1800, 1, 120, 24, 6, 24, 282240, 2, 6, 24, 15120, 2, 5760, 6, 5040, 720, 24, 6, 1451520, 2, 5040, 120, 5040, 6, 1800, 720, 40320, 24, 720, 2, 1117670400, 1, 6, 1800, 5040, 6
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2020

Keywords

Comments

An anti-run is a sequence with no adjacent equal parts.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(1) = 1 through a(10) = 6 permutations:
  ()  (2)  (4)  (2,3)  (11)  (2,4,2)  (31)  (2,3,7)  (21,4)  (11,2,5)
                (3,2)                       (2,7,3)  (4,21)  (11,5,2)
                                            (3,2,7)          (2,11,5)
                                            (3,7,2)          (2,5,11)
                                            (7,2,3)          (5,11,2)
                                            (7,3,2)          (5,2,11)
		

Crossrefs

The version for factorial numbers is A335407.
Anti-run compositions are A003242.
Anti-run patterns are A005649.
Permutations of prime indices are A008480.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Inseparable partitions are ranked by A335448.
Anti-run permutations of prime indices are A335452.
Strict permutations of prime indices are A335489.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[2^n-1]],!MatchQ[#,{_,x_,x_,_}]&]],{n,0,30}]
  • PARI
    \\ See A335452 for count.
    a(n) = {count(factor(2^n-1)[,2])} \\ Andrew Howroyd, Feb 03 2021

Formula

a(n) = A335452(A000225(n)).

Extensions

Terms a(51) and beyond from Andrew Howroyd, Feb 03 2021

A278992 Number of simple chord-labeled chord diagrams with n chords.

Original entry on oeis.org

0, 1, 1, 21, 168, 1968, 26094, 398653, 6872377, 132050271, 2798695656, 64866063276, 1632224748984, 44316286165297, 1291392786926821, 40202651019430461, 1331640833909877144, 46762037794122159492, 1735328399106396110310, 67858430028772637693845
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2016

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20;
    CoefficientList[(Sqrt[1 - 2t]+1)(1/Sqrt[1 - 2t])*E^(Sqrt[1 - 2t] - t - 1) - (2-t)/E^t + O[t]^(terms+1), t]*Range[0, terms]! // Rest (* Jean-François Alcover, Sep 14 2018 *)

Formula

E.g.f.: (1+sqrt(1-2*t))*(1-2*t)^(-1/2)*exp(-1-t+sqrt(1-2*t))-(2-t)*exp(-t).
a(n) ~ 2^(n+1/2) * n^n / exp(n+3/2). - Vaclav Kotesovec, Dec 07 2016
Conjecture D-finite with recurrence: +(-n+2)*a(n) +(2*n^2-8*n+7)*a(n-1) +(6*n^2-18*n+11)*a(n-2) +(n-1)*(6*n-11)*a(n-3) +2*(n-1)*(n-2)*a(n-4)=0. - R. J. Mathar, Jan 27 2020
Previous Showing 11-20 of 26 results. Next