cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 81 results. Next

A324737 Number of subsets of {2...n} containing every element of {2...n} whose prime indices all belong to the subset.

Original entry on oeis.org

1, 2, 3, 6, 8, 16, 24, 48, 84, 168, 216, 432, 648, 1296, 2448, 4896, 6528, 13056, 19584, 39168, 77760, 155520, 229248, 458496, 790272, 1580544, 3128832, 6257664, 9386496, 18772992, 24081408, 48162816, 95938560, 191877120, 378335232, 756670464, 1135005696, 2270011392
Offset: 1

Views

Author

Gus Wiseman, Mar 13 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also the number of subsets of {2...n} with complement containing no term whose prime indices all belong to the subset.

Examples

			The a(1) = 1 through a(6) = 16 subsets:
  {}  {}   {}     {}       {}         {}
      {2}  {3}    {3}      {4}        {4}
           {2,3}  {4}      {5}        {5}
                  {2,3}    {3,5}      {6}
                  {3,4}    {4,5}      {3,5}
                  {2,3,4}  {2,3,5}    {4,5}
                           {3,4,5}    {4,6}
                           {2,3,4,5}  {5,6}
                                      {2,3,5}
                                      {3,4,5}
                                      {3,5,6}
                                      {4,5,6}
                                      {2,3,4,5}
                                      {2,3,5,6}
                                      {3,4,5,6}
                                      {2,3,4,5,6}
An example for n = 15 is {2, 3, 5, 8, 9, 10, 11, 15}. The numbers from 2 to 15 with all prime indices in the subset are {3, 5, 9, 11, 15}, which all belong to the subset, as required.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[2,n]],Function[set,SubsetQ[set,Select[Range[2,n],SubsetQ[set,PrimePi/@First/@FactorInteger[#]]&]]]]],{n,10}]
  • PARI
    pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
    a(n)={my(p=vector(n-1, k, pset(k+1)>>1), d=0); for(i=1, #p, d=bitor(d, p[i]));
    ((k, b)->if(k>#p, 1, my(t=self()(k+1, b+(1<Andrew Howroyd, Aug 24 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 24 2019

A324767 Number of recursively anti-transitive rooted identity trees with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 9, 17, 33, 63, 126, 254, 511, 1039, 2124, 4371, 9059, 18839, 39339, 82385, 173111, 364829, 771010, 1633313
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is recursively anti-transitive if no branch of a branch of any terminal subtree is a branch of the same subtree. It is an identity tree if there are no repeated branches directly under a common root.
Also the number of finitary sets with n brackets where, at any level, no element of an element of a set is an element of the same set. For example, the a(8) = 9 finitary sets are (o = {}):
{{{{{{{o}}}}}}}
{{{{o,{{o}}}}}}
{{{o,{{{o}}}}}}
{{o,{{{{o}}}}}}
{{{o},{{{o}}}}}
{o,{{{{{o}}}}}}
{o,{{o,{{o}}}}}
{{o},{{{{o}}}}}
{{o},{o,{{o}}}}
The Matula-Goebel numbers of these trees are given by A324766.

Examples

			The a(4) = 1 through a(8) = 9 recursively anti-transitive rooted identity trees:
  (((o)))  (o((o)))   ((o((o))))   (((o((o)))))   ((o)(o((o))))
           ((((o))))  (o(((o))))   ((o)(((o))))   (o((o((o)))))
                      (((((o)))))  ((o(((o)))))   ((((o((o))))))
                                   (o((((o)))))   (((o)(((o)))))
                                   ((((((o))))))  (((o(((o))))))
                                                  ((o)((((o)))))
                                                  ((o((((o))))))
                                                  (o(((((o))))))
                                                  (((((((o)))))))
		

Crossrefs

Cf. A324695, A324751, A324758, A324764 (non-recursive version), A324765 (non-identity version), A324766, A324770, A324839, A324840, A324844.

Programs

  • Mathematica
    iallt[n_]:=Select[Union[Sort/@Join@@(Tuples[iallt/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&&Intersection[Union@@#,#]=={}&];
    Table[Length[iallt[n]],{n,10}]

A297571 Matula-Goebel numbers of fully unbalanced rooted trees.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 22, 26, 29, 30, 31, 33, 39, 41, 47, 55, 58, 62, 65, 66, 78, 79, 82, 87, 93, 94, 101, 109, 110, 113, 123, 127, 130, 137, 141, 145, 155, 158, 165, 167, 174, 179, 186, 195, 202, 205, 211, 218, 226, 235, 237, 246, 254, 257, 271, 274
Offset: 1

Views

Author

Gus Wiseman, Dec 31 2017

Keywords

Comments

An unlabeled rooted tree is fully unbalanced if either (1) it is a single node, or (2a) every branch has a different number of nodes and (2b) every branch is fully unbalanced also. The number of fully unbalanced trees with n nodes is A032305(n).
The first finitary number (A276625) not in this sequence is 143.

Examples

			Sequence of fully unbalanced trees begins:
   1 o
   2 (o)
   3 ((o))
   5 (((o)))
   6 (o(o))
  10 (o((o)))
  11 ((((o))))
  13 ((o(o)))
  15 ((o)((o)))
  22 (o(((o))))
  26 (o(o(o)))
  29 ((o((o))))
  30 (o(o)((o)))
  31 (((((o)))))
  33 ((o)(((o))))
  39 ((o)(o(o)))
  41 (((o(o))))
  47 (((o)((o))))
		

Crossrefs

Programs

  • Mathematica
    nn=2000;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    MGweight[n_]:=If[n===1,1,1+Total[Cases[FactorInteger[n],{p_,k_}:>k*MGweight[PrimePi[p]]]]];
    imbalQ[n_]:=Or[n===1,With[{m=primeMS[n]},And[UnsameQ@@MGweight/@m,And@@imbalQ/@m]]];
    Select[Range[nn],imbalQ]

A301343 Regular triangle where T(n,k) is the number of planted achiral (or generalized Bethe) trees with n nodes and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 3, 2, 2, 1, 1, 0, 1, 3, 2, 2, 1, 1, 1, 0, 1, 4, 2, 4, 1, 2, 1, 1, 0, 1, 4, 3, 4, 1, 3, 1, 1, 1, 0, 1, 5, 3, 6, 2, 4, 1, 2, 1, 1, 0, 1, 5, 3, 6, 2, 4, 1, 2, 1, 1, 1, 0, 1, 6, 4, 9, 2, 7, 1, 4, 2, 2, 1, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Examples

			Triangle begins:
1
1  0
1  1  0
1  1  1  0
1  2  1  1  0
1  2  1  1  1  0
1  3  2  2  1  1  0
1  3  2  2  1  1  1  0
1  4  2  4  1  2  1  1  0
1  4  3  4  1  3  1  1  1  0
1  5  3  6  2  4  1  2  1  1  0
The T(9,4) = 4 planted achiral trees: (((((oooo))))), ((((oo)(oo)))), (((oo))((oo))), ((o)(o)(o)(o)).
		

Crossrefs

Row sums are A003238. A version without the zeroes or first row is A214575.

Programs

  • Mathematica
    tri[n_,k_]:=If[k===1,1,If[k>=n,0,Sum[tri[n-k,d],{d,Divisors[k]}]]];
    Table[tri[n,k],{n,10},{k,n}]

Formula

T(n,1) = 1, T(n,k) = 0 if n <= k, otherwise T(n,k) = Sum_{d|k} T(n - k, d).

A318227 Number of inequivalent leaf-colorings of rooted identity trees with n nodes.

Original entry on oeis.org

1, 1, 1, 3, 5, 14, 38, 114, 330, 1054, 3483, 11841, 41543, 149520, 552356, 2084896, 8046146, 31649992, 127031001, 518434863, 2153133594, 9081863859, 38909868272, 169096646271, 745348155211, 3329032020048, 15063018195100, 68998386313333, 319872246921326, 1500013368166112
Offset: 1

Views

Author

Gus Wiseman, Aug 21 2018

Keywords

Comments

In a rooted identity tree, all branches directly under any given branch are different.
The leaves are colored after selection of the tree. Since all trees are asymmetric, the symmetry group of the leaves will be the identity group and a tree with k leaves will have Bell(k) inequivalent leaf-colorings. - Andrew Howroyd, Dec 10 2020

Examples

			Inequivalent representatives of the a(6) = 14 leaf-colorings:
  (1(1(1)))  ((1)((1)))  (1(((1))))  ((1((1))))  (((1(1))))  (((((1)))))
  (1(1(2)))  ((1)((2)))  (1(((2))))  ((1((2))))  (((1(2))))
  (1(2(1)))
  (1(2(2)))
  (1(2(3)))
		

Crossrefs

Programs

  • Mathematica
    idt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[idt/@c]],UnsameQ@@#&],{c,IntegerPartitions[n-1]}]];
    Table[Sum[BellB[Count[tree,{},{0,Infinity}]],{tree,idt[n]}],{n,16}]
  • PARI
    \\ bell(n) is A000110(n).
    WeighMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, (-1)^(i-1)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    bell(n)={sum(k=1, n, stirling(n,k,2))}
    seq(n)={my(v=[y], b=vector(n,k,bell(k))); for(n=2, n, v=concat(v[1], WeighMT(v))); vector(n, k, sum(i=1, k, polcoef(v[k],i)*b[i]))} \\ Andrew Howroyd, Dec 10 2020

Formula

a(n) = Sum_{k=1..n} A055327(n,k) * A000110(k). - Andrew Howroyd, Dec 10 2020

Extensions

Terms a(17) and beyond from Andrew Howroyd, Dec 10 2020

A318230 Number of inequivalent leaf-colorings of binary rooted trees with 2n + 1 nodes.

Original entry on oeis.org

1, 2, 4, 18, 79, 474, 3166, 24451, 208702, 1958407, 19919811, 217977667, 2547895961, 31638057367, 415388265571, 5743721766718, 83356613617031, 1265900592208029, 20064711719120846, 331153885800672577, 5679210649417608867, 101017359002718628295, 1860460510677429522171
Offset: 0

Views

Author

Gus Wiseman, Aug 21 2018

Keywords

Examples

			Inequivalent representatives of the a(3) = 18 leaf-colorings of binary rooted trees with 7 nodes:
  (1(1(11)))  ((11)(11))
  (1(1(12)))  ((11)(12))
  (1(1(22)))  ((11)(22))
  (1(1(23)))  ((11)(23))
  (1(2(11)))  ((12)(12))
  (1(2(12)))  ((12)(13))
  (1(2(13)))  ((12)(34))
  (1(2(22)))
  (1(2(23)))
  (1(2(33)))
  (1(2(34)))
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, my(p=x*Ser(v[1..n-1])); v[n]=polcoef(p^2 + if(n%2==0, sRaise(p,2)), n)/2); x*Ser(v)}
    InequivalentColoringsSeq(cycleIndexSeries(20)) \\ Andrew Howroyd, Dec 11 2020

Extensions

Terms a(5) and beyond from Andrew Howroyd, Dec 10 2020

A325706 Heinz numbers of integer partitions containing all of their distinct multiplicities.

Original entry on oeis.org

1, 2, 6, 9, 10, 12, 14, 18, 22, 26, 30, 34, 36, 38, 40, 42, 46, 58, 60, 62, 66, 70, 74, 78, 82, 84, 86, 90, 94, 102, 106, 110, 112, 114, 118, 120, 122, 125, 126, 130, 132, 134, 138, 142, 146, 150, 154, 156, 158, 166, 170, 174, 178, 180, 182, 186, 190, 194, 198
Offset: 1

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Also numbers n divisible by the squarefree kernel of their "shadow" A181819(n).
The enumeration of these partitions by sum is given by A325705.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    6: {1,2}
    9: {2,2}
   10: {1,3}
   12: {1,1,2}
   14: {1,4}
   18: {1,2,2}
   22: {1,5}
   26: {1,6}
   30: {1,2,3}
   34: {1,7}
   36: {1,1,2,2}
   38: {1,8}
   40: {1,1,1,3}
   42: {1,2,4}
   46: {1,9}
   58: {1,10}
   60: {1,1,2,3}
   62: {1,11}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],#==1||SubsetQ[PrimePi/@First/@FactorInteger[#],Last/@FactorInteger[#]]&]

A325756 A number k belongs to the sequence if k = 1 or k is divisible by its prime shadow A181819(k) and the quotient k/A181819(k) also belongs to the sequence.

Original entry on oeis.org

1, 2, 12, 336, 360, 45696, 52416, 75600, 22665216, 31804416, 42928704, 77792400, 92610000, 164656800, 174636000
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

We define the prime shadow A181819(k) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
     12: {1,1,2}
    336: {1,1,1,1,2,4}
    360: {1,1,1,2,2,3}
  45696: {1,1,1,1,1,1,1,2,4,7}
  52416: {1,1,1,1,1,1,2,2,4,6}
  75600: {1,1,1,1,2,2,2,3,3,4}
		

Crossrefs

Programs

  • Mathematica
    red[n_] := If[n == 1, 1, Times @@ Prime /@ Last /@ FactorInteger[n]];
    suQ[n_]:=n==1||Divisible[n,red[n]]&&suQ[n/red[n]];
    Select[Range[10000],suQ]
  • PARI
    ps(n) = my(f=factor(n)); prod(k=1, #f~, prime(f[k, 2])); \\ A181819
    isok(k) = {if ((k==1), return(1)); my(p=ps(k)); ((k % p) == 0) && isok(k/p);} \\ Michel Marcus, Jan 09 2021

Extensions

a(9)-a(15) from Amiram Eldar, Jan 09 2021

A298304 Number of rooted trees on n nodes with strictly thinning limbs.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 12, 19, 31, 51, 85, 144, 245, 417, 712, 1221, 2091, 3600, 6216, 10763, 18691, 32546, 56782, 99271, 173849, 304877, 535412, 941385, 1657069, 2919930, 5150546, 9093894, 16071634, 28428838, 50331137, 89181251, 158145233, 280650225, 498410197
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2018

Keywords

Comments

An unlabeled rooted tree has strictly thinning limbs if its outdegrees are strictly decreasing from root to leaves.

Examples

			The a(7) = 7 trees: (oo(o(o))), (o(o)(oo)), (ooo(oo)), ((o)(o)(o)), (oo(o)(o)), (oooo(o)), (oooooo).
		

Crossrefs

Programs

  • Mathematica
    stinctQ[t_]:=And@@Cases[t,b_List:>Length[b]>Max@@Length/@b,{0,Infinity}];
    strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],stinctQ]];
    Table[Length[strut[n]],{n,20}]

Extensions

a(26)-a(40) from Alois P. Heinz, Jan 17 2018

A298533 Number of unlabeled rooted trees with n vertices such that every branch of the root has the same number of leaves.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 31, 64, 144, 333, 808, 2004, 5109, 13199, 34601, 91539, 244307, 656346, 1774212, 4820356, 13157591, 36060811, 99198470, 273790194, 757971757, 2104222594, 5856496542, 16338140048, 45678276507, 127964625782, 359155302204, 1009790944307
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2018

Keywords

Examples

			The a(5) = 8 trees: ((((o)))), (((oo))), ((o(o))), ((ooo)), (o((o))), ((o)(o)), (oo(o)), (oooo)
		

Crossrefs

Programs

  • Mathematica
    rut[n_]:=rut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[rut/@c]]]/@IntegerPartitions[n-1]];
    Table[Length[Select[rut[n],SameQ@@(Count[#,{},{0,Infinity}]&/@#)&]],{n,15}]
  • PARI
    \\ here R is A055277 as vector of polynomials
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1  + exp( sum(i=1, j, 1/i * subst( subst( A + x * O(x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)};
    seq(n)={my(M=Mat(apply(p->Colrev(p,n), R(n-1)))); concat([1],sum(i=2, #M, EulerT(M[i,])))} \\ Andrew Howroyd, May 20 2018

Extensions

Terms a(19) and beyond from Andrew Howroyd, May 20 2018
Previous Showing 41-50 of 81 results. Next