cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 46 results. Next

A359495 Sum of positions of 1's in binary expansion minus sum of positions of 1's in reversed binary expansion, where positions in a sequence are read starting with 1 from the left.

Original entry on oeis.org

0, 0, -1, 0, -2, 0, -2, 0, -3, 0, -2, 1, -4, -1, -3, 0, -4, 0, -2, 2, -4, 0, -2, 2, -6, -2, -4, 0, -6, -2, -4, 0, -5, 0, -2, 3, -4, 1, -1, 4, -6, -1, -3, 2, -5, 0, -2, 3, -8, -3, -5, 0, -7, -2, -4, 1, -9, -4, -6, -1, -8, -3, -5, 0, -6, 0, -2, 4, -4, 2, 0, 6
Offset: 0

Views

Author

Gus Wiseman, Jan 05 2023

Keywords

Comments

Also the sum of partial sums of reversed binary expansion minus sum of partial sums of binary expansion.

Examples

			The binary expansion of 158 is (1,0,0,1,1,1,1,0), with positions of 1's {1,4,5,6,7} with sum 23, reversed {2,3,4,5,8} with sum 22, so a(158) = 1.
		

Crossrefs

Indices of positive terms are A359401.
Indices of 0's are A359402.
A030190 gives binary expansion, reverse A030308.
A070939 counts binary digits.
A230877 adds up positions of 1's in binary expansion, reverse A029931.

Programs

  • Maple
    a:= n-> (l-> add(i*(l[-i]-l[i]), i=1..nops(l)))(Bits[Split](n)):
    seq(a(n), n=0..127);  # Alois P. Heinz, Jan 09 2023
  • Mathematica
    sap[q_]:=Sum[q[[i]]*(2i-Length[q]-1),{i,Length[q]}];
    Table[sap[IntegerDigits[n,2]],{n,0,100}]
  • Python
    def A359495(n):
        k = n.bit_length()-1
        return sum((i<<1)-k for i, j in enumerate(bin(n)[2:]) if j=='1') # Chai Wah Wu, Jan 09 2023

Formula

a(n) = A029931(n) - A230877(n).
If n = Sum_{i=1..k} q_i * 2^(i-1), then a(n) = Sum_{i=1..k} q_i * (2i-k-1).

A335236 Numbers k such that the k-th composition in standard order (A066099) is not a singleton nor pairwise coprime.

Original entry on oeis.org

0, 10, 21, 22, 26, 34, 36, 40, 42, 43, 45, 46, 53, 54, 58, 69, 70, 73, 74, 76, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98, 100, 104, 106, 107, 109, 110, 117, 118, 122, 130, 136, 138, 139, 141, 142, 146, 147, 148, 149, 150, 153, 154, 156, 160, 162, 163, 164
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

These are compositions whose product is strictly greater than the LCM of their parts.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
    0: ()            74: (3,2,2)        109: (1,2,1,2,1)
   10: (2,2)         76: (3,1,3)        110: (1,2,1,1,2)
   21: (2,2,1)       81: (2,4,1)        117: (1,1,2,2,1)
   22: (2,1,2)       82: (2,3,2)        118: (1,1,2,1,2)
   26: (1,2,2)       84: (2,2,3)        122: (1,1,1,2,2)
   34: (4,2)         85: (2,2,2,1)      130: (6,2)
   36: (3,3)         86: (2,2,1,2)      136: (4,4)
   40: (2,4)         87: (2,2,1,1,1)    138: (4,2,2)
   42: (2,2,2)       88: (2,1,4)        139: (4,2,1,1)
   43: (2,2,1,1)     90: (2,1,2,2)      141: (4,1,2,1)
   45: (2,1,2,1)     91: (2,1,2,1,1)    142: (4,1,1,2)
   46: (2,1,1,2)     93: (2,1,1,2,1)    146: (3,3,2)
   53: (1,2,2,1)     94: (2,1,1,1,2)    147: (3,3,1,1)
   54: (1,2,1,2)     98: (1,4,2)        148: (3,2,3)
   58: (1,1,2,2)    100: (1,3,3)        149: (3,2,2,1)
   69: (4,2,1)      104: (1,2,4)        150: (3,2,1,2)
   70: (4,1,2)      106: (1,2,2,2)      153: (3,1,3,1)
   73: (3,3,1)      107: (1,2,2,1,1)    154: (3,1,2,2)
		

Crossrefs

The version for prime indices is A316438.
The version for binary indices is A335237.
The complement is A335235.
The version with singletons allowed is A335239.
Binary indices are pairwise coprime or a singleton: A087087.
The version counting partitions is 1 + A335240.
All of the following pertain to compositions in standard order:
- Length is A000120.
- The parts are row k of A066099.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!(Length[stc[#]]==1||CoprimeQ@@stc[#])&]

A337452 Number of relatively prime strict integer partitions of n with no 1's.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 2, 1, 3, 2, 6, 3, 9, 7, 11, 11, 20, 15, 28, 24, 35, 36, 55, 47, 73, 71, 95, 96, 136, 123, 180, 177, 226, 235, 305, 299, 403, 406, 503, 523, 668, 662, 852, 873, 1052, 1115, 1370, 1391, 1720, 1784, 2125, 2252, 2701, 2786, 3348, 3520, 4116
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2020

Keywords

Examples

			The a(5) = 1 through a(16) = 11 partitions (A = 10, B = 11, C = 12, D = 13):
  32  43  53  54   73   65   75   76   95    87    97
      52      72   532  74   543  85   B3    B4    B5
              432       83   732  94   653   D2    D3
                        92        A3   743   654   754
                        542       B2   752   753   763
                        632       643  932   762   853
                                  652  5432  843   943
                                  742        852   952
                                  832        942   B32
                                             A32   6532
                                             6432  7432
		

Crossrefs

A078374 is the version allowing 1's.
A302698 is the non-strict version.
A332004 is the ordered version allowing 1's.
A337450 is the ordered non-strict version.
A337451 is the ordered version.
A337485 is the pairwise coprime version.
A000837 counts relatively prime partitions.
A078374 counts relatively prime strict partitions.
A002865 counts partitions with no 1's.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A337561 counts pairwise coprime strict compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,15}]

A335239 Numbers k such that the k-th composition in standard-order (A066099) does not have all pairwise coprime parts, where a singleton is not coprime unless it is (1).

Original entry on oeis.org

0, 2, 4, 8, 10, 16, 21, 22, 26, 32, 34, 36, 40, 42, 43, 45, 46, 53, 54, 58, 64, 69, 70, 73, 74, 76, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98, 100, 104, 106, 107, 109, 110, 117, 118, 122, 128, 130, 136, 138, 139, 141, 142, 146, 147, 148, 149, 150, 153
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

We use the Mathematica definition for CoprimeQ, so a singleton is not considered coprime unless it is (1).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
    0: ()            45: (2,1,2,1)     86: (2,2,1,2)
    2: (2)           46: (2,1,1,2)     87: (2,2,1,1,1)
    4: (3)           53: (1,2,2,1)     88: (2,1,4)
    8: (4)           54: (1,2,1,2)     90: (2,1,2,2)
   10: (2,2)         58: (1,1,2,2)     91: (2,1,2,1,1)
   16: (5)           64: (7)           93: (2,1,1,2,1)
   21: (2,2,1)       69: (4,2,1)       94: (2,1,1,1,2)
   22: (2,1,2)       70: (4,1,2)       98: (1,4,2)
   26: (1,2,2)       73: (3,3,1)      100: (1,3,3)
   32: (6)           74: (3,2,2)      104: (1,2,4)
   34: (4,2)         76: (3,1,3)      106: (1,2,2,2)
   36: (3,3)         81: (2,4,1)      107: (1,2,2,1,1)
   40: (2,4)         82: (2,3,2)      109: (1,2,1,2,1)
   42: (2,2,2)       84: (2,2,3)      110: (1,2,1,1,2)
   43: (2,2,1,1)     85: (2,2,2,1)    117: (1,1,2,2,1)
		

Crossrefs

The complement is A333227.
The version without singletons is A335236.
Ignoring repeated parts gives A335238.
Singleton or pairwise coprime partitions are counted by A051424.
Singleton or pairwise coprime sets are ranked by A087087.
Numbers whose binary indices are pairwise coprime are A326675.
Coprime partitions are counted by A327516.
Non-coprime partitions are counted by A335240.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.
- Coprime compositions are A333227.
- Compositions whose distinct parts are coprime are A333228.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!CoprimeQ@@stc[#]&]

A337450 Number of relatively prime compositions of n with no 1's.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 7, 5, 17, 17, 54, 51, 143, 168, 358, 482, 986, 1313, 2583, 3663, 6698, 9921, 17710, 26489, 46352, 70928, 121137, 188220, 317810, 497322, 832039, 1313501, 2177282, 3459041, 5702808, 9094377, 14930351, 23895672, 39084070, 62721578
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(5) = 2 through a(10) = 17 compositions (empty column indicated by dot):
  (2,3)  .  (2,5)    (3,5)    (2,7)      (3,7)
  (3,2)     (3,4)    (5,3)    (4,5)      (7,3)
            (4,3)    (2,3,3)  (5,4)      (2,3,5)
            (5,2)    (3,2,3)  (7,2)      (2,5,3)
            (2,2,3)  (3,3,2)  (2,2,5)    (3,2,5)
            (2,3,2)           (2,3,4)    (3,3,4)
            (3,2,2)           (2,4,3)    (3,4,3)
                              (2,5,2)    (3,5,2)
                              (3,2,4)    (4,3,3)
                              (3,4,2)    (5,2,3)
                              (4,2,3)    (5,3,2)
                              (4,3,2)    (2,2,3,3)
                              (5,2,2)    (2,3,2,3)
                              (2,2,2,3)  (2,3,3,2)
                              (2,2,3,2)  (3,2,2,3)
                              (2,3,2,2)  (3,2,3,2)
                              (3,2,2,2)  (3,3,2,2)
		

Crossrefs

A000740 is the version allowing 1's.
2*A055684(n) is the case of length 2.
A302697 ranks the unordered case.
A302698 is the unordered version.
A337451 is the strict version.
A337452 is the unordered strict version.
A000837 counts relatively prime partitions.
A002865 counts partitions with no 1's.
A101268 counts singleton or pairwise coprime compositions.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A337462 counts pairwise coprime compositions.

Programs

  • Maple
    b:= proc(n, g) option remember; `if`(n=0,
         `if`(g=1, 1, 0), add(b(n-j, igcd(g, j)), j=2..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..42);
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MemberQ[#,1]&&GCD@@#==1&]],{n,0,15}]

A337451 Number of relatively prime strict compositions of n with no 1's.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 4, 2, 10, 8, 20, 14, 34, 52, 72, 90, 146, 172, 244, 390, 502, 680, 956, 1218, 1686, 2104, 3436, 4078, 5786, 7200, 10108, 12626, 17346, 20876, 32836, 38686, 53674, 67144, 91528, 113426, 152810, 189124, 245884, 343350, 428494, 552548, 719156
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.

Examples

			The a(5) = 2 through a(10) = 8 compositions (empty column indicated by dot):
  (2,3)  .  (2,5)  (3,5)  (2,7)    (3,7)
  (3,2)     (3,4)  (5,3)  (4,5)    (7,3)
            (4,3)         (5,4)    (2,3,5)
            (5,2)         (7,2)    (2,5,3)
                          (2,3,4)  (3,2,5)
                          (2,4,3)  (3,5,2)
                          (3,2,4)  (5,2,3)
                          (3,4,2)  (5,3,2)
                          (4,2,3)
                          (4,3,2)
		

Crossrefs

A032022 does not require relative primality.
A302698 is the unordered non-strict version.
A332004 is the version allowing 1's.
A337450 is the non-strict version.
A337452 is the unordered version.
A000837 counts relatively prime partitions.
A032020 counts strict compositions.
A078374 counts strict relatively prime partitions.
A002865 counts partitions with no 1's.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A337462 counts pairwise coprime compositions.
A337561 counts strict pairwise coprime compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,15}]

A101391 Triangle read by rows: T(n,k) is the number of compositions of n into k parts x_1, x_2, ..., x_k such that gcd(x_1,x_2,...,x_k) = 1 (1<=k<=n).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 2, 3, 1, 0, 4, 6, 4, 1, 0, 2, 9, 10, 5, 1, 0, 6, 15, 20, 15, 6, 1, 0, 4, 18, 34, 35, 21, 7, 1, 0, 6, 27, 56, 70, 56, 28, 8, 1, 0, 4, 30, 80, 125, 126, 84, 36, 9, 1, 0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 4, 42, 154, 325, 461, 462, 330, 165, 55, 11, 1, 0, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1
Offset: 1

Views

Author

Emeric Deutsch, Jan 26 2005

Keywords

Comments

If instead we require that the individual parts (x_i,x_j) be relatively prime, we get A282748. This is the question studied by Shonhiwa (2006). - N. J. A. Sloane, Mar 05 2017.

Examples

			T(6,3)=9 because we have 411,141,114 and the six permutations of 123 (222 does not qualify).
T(8,3)=18 because binomial(0,2)*mobius(8/1)+binomial(1,2)*mobius(8/2)+binomial(3,2)*mobius(8/4)+binomial(7,2)*mobius(8/8)=0+0+(-3)+21=18.
Triangle begins:
   1;
   0,  1;
   0,  2,  1;
   0,  2,  3,   1;
   0,  4,  6,   4,   1;
   0,  2,  9,  10,   5,   1;
   0,  6, 15,  20,  15,   6,   1;
   0,  4, 18,  34,  35,  21,   7,   1;
   0,  6, 27,  56,  70,  56,  28,   8,   1;
   0,  4, 30,  80, 125, 126,  84,  36,   9,   1;
   0, 10, 45, 120, 210, 252, 210, 120,  45,  10,  1;
   0,  4, 42, 154, 325, 461, 462, 330, 165,  55, 11,  1;
   0, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1;
  ...
From _Gus Wiseman_, Oct 19 2020: (Start)
Row n = 6 counts the following compositions:
  (15)  (114)  (1113)  (11112)  (111111)
  (51)  (123)  (1122)  (11121)
        (132)  (1131)  (11211)
        (141)  (1212)  (12111)
        (213)  (1221)  (21111)
        (231)  (1311)
        (312)  (2112)
        (321)  (2121)
        (411)  (2211)
               (3111)
Missing are: (42), (24), (33), (222).
(End)
		

Crossrefs

Mirror image of A039911.
Row sums are A000740.
A000837 counts relatively prime partitions.
A135278 counts compositions by length.
A282748 is the pairwise coprime instead of relatively prime version.
A282750 is the unordered version.
A291166 ranks these compositions (evidently).
T(2n+1,n+1) gives A000984.

Programs

  • Maple
    with(numtheory): T:=proc(n,k) local d, j, b: d:=divisors(n): for j from 1 to tau(n) do b[j]:=binomial(d[j]-1,k-1)*mobius(n/d[j]) od: sum(b[i],i=1..tau(n)) end: for n from 1 to 14 do seq(T(n,k),k=1..n) od; # yields the sequence in triangular form
    # second Maple program:
    b:= proc(n, g) option remember; `if`(n=0, `if`(g=1, 1, 0),
          expand(add(b(n-j, igcd(g, j))*x, j=1..n)))
        end:
    T:= (n, k)-> coeff(b(n,0),x,k):
    seq(seq(T(n,k), k=1..n), n=1..14);  # Alois P. Heinz, May 05 2025
  • Mathematica
    t[n_, k_] := Sum[Binomial[d-1, k-1]*MoebiusMu[n/d], {d, Divisors[n]}]; Table[t[n, k], {n, 2, 14}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],GCD@@#==1&]],{n,10},{k,2,n}] (* change {k,2,n} to {k,1,n} for the version with zeros. - Gus Wiseman, Oct 19 2020 *)
  • PARI
    T(n, k) = sumdiv(n, d, binomial(d-1, k-1)*moebius(n/d)); \\ Michel Marcus, Mar 09 2016

Formula

T(n,k) = Sum_{d|n} binomial(d-1,k-1)*mobius(n/d).
Sum_{k=1..n} k * T(n,k) = A085411(n). - Alois P. Heinz, May 05 2025

Extensions

Definition clarified by N. J. A. Sloane, Mar 05 2017
Edited by Alois P. Heinz, May 05 2025

A291165 Disconnected Haar graph numbers.

Original entry on oeis.org

2, 4, 8, 10, 16, 32, 34, 36, 40, 42, 64, 128, 130, 136, 138, 160, 162, 168, 170, 256, 260, 288, 292, 512, 514, 520, 522, 528, 544, 546, 552, 554, 640, 642, 648, 650, 672, 674, 680, 682, 1024, 2048, 2050, 2052, 2056, 2058, 2080, 2082, 2084, 2088, 2090, 2176, 2178, 2184
Offset: 1

Views

Author

Eric W. Weisstein, Aug 19 2017

Keywords

Comments

Includes numbers of the form 2^n.
Complement of A291166.

Crossrefs

Cf. A291166 (connected).

A326672 The positions of ones in the binary expansion of n have integer geometric mean.

Original entry on oeis.org

1, 2, 4, 8, 9, 13, 16, 18, 26, 32, 36, 52, 64, 72, 104, 128, 144, 208, 256, 257, 288, 321, 416, 512, 514, 576, 642, 832, 1024, 1028, 1152, 1284, 1664, 2048, 2056, 2304, 2568, 3328, 4096, 4112, 4608, 5136, 6656, 8192, 8224, 9216, 10272, 13312, 16384, 16448
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Crossrefs

Partitions with integer geometric mean are A067539.
Subsets with integer geometric mean are A326027.
Factorizations with integer geometric mean are A326028.
Numbers whose binary expansion positions have integer mean are A326669.
Numbers whose binary expansion positions are relatively prime are A326674.
Numbers whose reversed binary expansion positions have integer geometric mean are A326673.

Programs

  • Mathematica
    Select[Range[100],IntegerQ[GeometricMean[Join@@Position[IntegerDigits[#,2],1]]]&]

A059519 Number of partitions of n all of whose subpartitions sum to distinct values. Partition(n) = [a, b, c...] where 2n = 2^a + 2^b + 2^c + ...

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 24, 26, 28, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 48, 50, 52, 56, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 80, 81, 84, 88, 96, 98, 100, 104, 112, 116, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140
Offset: 1

Views

Author

Marc LeBrun, Jan 19 2001

Keywords

Comments

Partition encoding as in A029931. Complement of A059520.
From Gus Wiseman, Jul 22 2019: (Start)
These are numbers whose positions of 1's in their reversed binary expansion form a strict knapsack partition (A275972). The initial terms together with their corresponding partitions are:
1: (1)
2: (2)
3: (2,1)
4: (3)
5: (3,1)
6: (3,2)
8: (4)
9: (4,1)
10: (4,2)
11: (4,2,1)
12: (4,3)
14: (4,3,2)
16: (5)
17: (5,1)
18: (5,2)
19: (5,2,1)
20: (5,3)
(End)

Examples

			14=2+4+8 so Partition(14) = [2,3,4], whose sub-sums are 0,2,3,4,5,6,7 and 14.
		

Crossrefs

Other sequences classifying numbers by their binary indices: A291166 (relatively prime), A295235 (arithmetic progression), A326669 (integer average), A326675 (pairwise coprime).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],UnsameQ@@Total/@Subsets[bpe[#]]&] (* Gus Wiseman, Jul 22 2019 *)
Previous Showing 21-30 of 46 results. Next