cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A337694 Numbers with no two relatively prime prime indices.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167, 169, 171, 173, 179, 181, 183, 185, 189, 191, 193, 197, 199
Offset: 1

Views

Author

Gus Wiseman, Sep 23 2020

Keywords

Comments

First differs from A305078 in having 1 and lacking 195.
First differs from A305103 in having 1 and 169 and lacking 195.
First differs from A328336 in lacking 897, with prime indices (2,6,9).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of integer partitions in which no two parts are relatively prime. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   1: {}      37: {12}     79: {22}      121: {5,5}
   3: {2}     39: {2,6}    81: {2,2,2,2} 125: {3,3,3}
   5: {3}     41: {13}     83: {23}      127: {31}
   7: {4}     43: {14}     87: {2,10}    129: {2,14}
   9: {2,2}   47: {15}     89: {24}      131: {32}
  11: {5}     49: {4,4}    91: {4,6}     133: {4,8}
  13: {6}     53: {16}     97: {25}      137: {33}
  17: {7}     57: {2,8}   101: {26}      139: {34}
  19: {8}     59: {17}    103: {27}      147: {2,4,4}
  21: {2,4}   61: {18}    107: {28}      149: {35}
  23: {9}     63: {2,2,4} 109: {29}      151: {36}
  25: {3,3}   65: {3,6}   111: {2,12}    157: {37}
  27: {2,2,2} 67: {19}    113: {30}      159: {2,16}
  29: {10}    71: {20}    115: {3,9}     163: {38}
  31: {11}    73: {21}    117: {2,2,6}   167: {39}
		

Crossrefs

A200976 and A328673 count these partitions.
A302696 and A302569 are pairwise coprime instead of pairwise non-coprime.
A318719 is the squarefree case.
A328867 looks at distinct prime indices.
A337666 is the version for standard compositions.
A101268 counts pairwise coprime or singleton compositions.
A318717 counts strict pairwise non-coprime partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
A337667 counts pairwise non-coprime compositions.

Programs

  • Maple
    filter:= proc(n) local F,i,j,np;
      if n::even and n>2 then return false fi;
      F:= map(t -> numtheory:-pi(t[1]), ifactors(n)[2]);
      np:= nops(F);
      for i from 1 to np-1 do
        for j from i+1 to np do
          if igcd(F[i],F[j])=1 then return false fi
      od od;
      true
    end proc:
    select(filter, [$1..300]); # Robert Israel, Oct 06 2020
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And];
    Select[Range[100],stabQ[primeMS[#],CoprimeQ]&]

A304712 Number of integer partitions of n whose parts are all equal or whose distinct parts are pairwise coprime.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 19, 25, 32, 43, 54, 70, 86, 105, 130, 162, 196, 240, 286, 339, 405, 485, 573, 674, 790, 922, 1072, 1252, 1456, 1685, 1939, 2226, 2557, 2923, 3349, 3822, 4347, 4931, 5593, 6335, 7170, 8092, 9105, 10233, 11495, 12903, 14458, 16169, 18063
Offset: 0

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Two parts are coprime if they have no common divisor greater than 1.

Examples

			The a(6) = 10 partitions whose parts are all equal or whose distinct parts are pairwise coprime are (6), (51), (411), (33), (321), (3111), (222), (2211), (21111), (111111).
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i, s) `if`(n=0, 1, `if`(i<1, 0,
          b(n, i, select(x-> x<=i, s))))
        end:
    b:= proc(n, i, s) option remember; g(n, i-1, s)+(f->
         `if`(f intersect s={}, add(g(n-i*j, i-1, s union f)
            , j=1..n/i), 0))(numtheory[factorset](i))
        end:
    a:= n-> g(n$2, {}):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 17 2018
  • Mathematica
    Table[Select[IntegerPartitions[n],Or[SameQ@@#,CoprimeQ@@Union[#]]&]//Length,{n,20}]
    (* Second program: *)
    g[n_, i_, s_] := If[n == 0, 1, If[i < 1, 0, b[n, i, Select[s, # <= i &]]]];
    b[n_, i_, s_] := b[n, i, s] = g[n, i - 1, s] + Function[f,
         If[f ~Intersection~ s == {}, Sum[g[n - i*j, i - 1, s ~Union~ f],
         {j, 1, n/i}], 0]][FactorInteger[i][[All, 1]]];
    a[n_] := g[n, n, {}];
    a /@ Range[0, 60] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A318716 Heinz numbers of strict integer partitions with relatively prime parts in which no two parts are relatively prime.

Original entry on oeis.org

2, 17719, 40807, 43381, 50431, 74269, 83143, 101543, 105703, 116143, 121307, 123469, 139919, 140699, 142883, 171613, 181831, 185803, 191479, 203557, 205813, 211381, 213239, 215267, 219271, 246703, 249587, 249899, 279371, 286897, 289007, 296993, 300847, 303949
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of strict integer partitions with Heinz numbers in the sequence begins: (1), (15,10,6), (21,14,6), (20,15,6), (15,12,10), (45,10,6), (18,15,10).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100000],With[{m=PrimePi/@FactorInteger[#][[All,1]]},And[SquareFreeQ[#],GCD@@m==1,And@@(GCD[##]>1&)@@@Select[Tuples[m,2],Less@@#&]]]&]

A337984 Heinz numbers of pairwise coprime integer partitions with no 1's, where a singleton is not considered coprime.

Original entry on oeis.org

15, 33, 35, 51, 55, 69, 77, 85, 93, 95, 119, 123, 141, 143, 145, 155, 161, 165, 177, 187, 201, 205, 209, 215, 217, 219, 221, 249, 253, 255, 265, 287, 291, 295, 309, 323, 327, 329, 335, 341, 355, 381, 385, 391, 395, 403, 407, 411, 413, 415, 437, 447, 451, 465
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2020

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     15: {2,3}     155: {3,11}     265: {3,16}
     33: {2,5}     161: {4,9}      287: {4,13}
     35: {3,4}     165: {2,3,5}    291: {2,25}
     51: {2,7}     177: {2,17}     295: {3,17}
     55: {3,5}     187: {5,7}      309: {2,27}
     69: {2,9}     201: {2,19}     323: {7,8}
     77: {4,5}     205: {3,13}     327: {2,29}
     85: {3,7}     209: {5,8}      329: {4,15}
     93: {2,11}    215: {3,14}     335: {3,19}
     95: {3,8}     217: {4,11}     341: {5,11}
    119: {4,7}     219: {2,21}     355: {3,20}
    123: {2,13}    221: {6,7}      381: {2,31}
    141: {2,15}    249: {2,23}     385: {3,4,5}
    143: {5,6}     253: {5,9}      391: {7,9}
    145: {3,10}    255: {2,3,7}    395: {3,22}
		

Crossrefs

A005117 is a superset.
A337485 counts these partitions.
A302568 considers singletons to be coprime.
A304711 allows 1's, with squarefree version A302797.
A337694 is the pairwise non-coprime instead of pairwise coprime version.
A007359 counts partitions into singleton or pairwise coprime parts with no 1's
A101268 counts pairwise coprime or singleton compositions, ranked by A335235.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions, ranked by A302696.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228.
A337667 counts pairwise non-coprime compositions, ranked by A337666.
A337697 counts pairwise coprime compositions with no 1's.
A337983 counts pairwise non-coprime strict compositions, with unordered version A318717 ranked by A318719.

Programs

  • Mathematica
    Select[Range[1,100,2],SquareFreeQ[#]&&CoprimeQ@@PrimePi/@First/@FactorInteger[#]&]

Formula

A302798 Squarefree numbers that are prime or whose prime indices are pairwise coprime. Heinz numbers of strict integer partitions that either consist of a single part or have pairwise coprime parts.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 41, 43, 46, 47, 51, 53, 55, 58, 59, 61, 62, 66, 67, 69, 70, 71, 73, 74, 77, 79, 82, 83, 85, 86, 89, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 110, 113, 118, 119, 122
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1. A single number is not considered coprime unless it is equal to 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of terms together with their sets of prime indices begins:
01 : {}
02 : {1}
03 : {2}
05 : {3}
06 : {1,2}
07 : {4}
10 : {1,3}
11 : {5}
13 : {6}
14 : {1,4}
15 : {2,3}
17 : {7}
19 : {8}
22 : {1,5}
23 : {9}
26 : {1,6}
29 : {10}
30 : {1,2,3}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,SquareFreeQ[#]&&(PrimeQ[#]||CoprimeQ@@PrimePi/@FactorInteger[#][[All,1]])]&]

A338331 Numbers whose set of distinct prime indices (A304038) is pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1

Views

Author

Gus Wiseman, Oct 31 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of partitions whose set of distinct parts is a singleton or pairwise coprime. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}          16: {1,1,1,1}     32: {1,1,1,1,1}
      2: {1}         17: {7}           33: {2,5}
      3: {2}         18: {1,2,2}       34: {1,7}
      4: {1,1}       19: {8}           35: {3,4}
      5: {3}         20: {1,1,3}       36: {1,1,2,2}
      6: {1,2}       22: {1,5}         37: {12}
      7: {4}         23: {9}           38: {1,8}
      8: {1,1,1}     24: {1,1,1,2}     40: {1,1,1,3}
      9: {2,2}       25: {3,3}         41: {13}
     10: {1,3}       26: {1,6}         43: {14}
     11: {5}         27: {2,2,2}       44: {1,1,5}
     12: {1,1,2}     28: {1,1,4}       45: {2,2,3}
     13: {6}         29: {10}          46: {1,9}
     14: {1,4}       30: {1,2,3}       47: {15}
     15: {2,3}       31: {11}          48: {1,1,1,1,2}
		

Crossrefs

A302798 is the squarefree case.
A304709 counts partitions with pairwise coprime distinct parts, with ordered version A337665 and Heinz numbers A304711.
A304711 does not consider singletons relatively prime, except for (1).
A304712 counts the partitions with these Heinz numbers.
A316476 is the version for indivisibility instead of relative primality.
A328867 is the pairwise non-coprime instead of pairwise coprime version.
A337600 counts triples of this type, with ordered version A337602.
A338330 is the complement.
A000961 lists powers of primes.
A051424 counts pairwise coprime or singleton partitions.
A304038 gives the distinct prime indices of each positive integer.
A327516 counts pairwise coprime partitions.
A333228 ranks compositions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    Select[Range[100],#==1||PrimePowerQ[#]||CoprimeQ@@PrimePi/@First/@FactorInteger[#]&]

Formula

Equals A304711 \/ A000961.

A337983 Number of compositions of n into distinct parts, any two of which have a common divisor > 1.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 3, 1, 3, 3, 5, 1, 13, 1, 13, 7, 19, 1, 35, 1, 59, 15, 65, 1, 117, 5, 133, 27, 195, 1, 411, 7, 435, 67, 617, 17, 941, 7, 1177, 135, 1571, 13, 2939, 31, 3299, 375, 4757, 13, 6709, 43, 8813, 643, 11307, 61, 16427, 123, 24331, 1203, 30461, 67
Offset: 0

Views

Author

Gus Wiseman, Oct 06 2020

Keywords

Comments

Number of pairwise non-coprime strict compositions of n.

Examples

			The a(2) = 1 through a(15) = 7 compositions (A..F = 10..15):
  2  3  4  5  6   7  8   9   A   B  C    D  E    F
              24     26  36  28     2A      2C   3C
              42     62  63  46     39      4A   5A
                             64     48      68   69
                             82     84      86   96
                                    93      A4   A5
                                    A2      C2   C3
                                    246     248
                                    264     284
                                    426     428
                                    462     482
                                    624     824
                                    642     842
		

Crossrefs

A318717 is the unordered version.
A318719 is the version for Heinz numbers of partitions.
A337561 is the pairwise coprime instead of pairwise non-coprime version, or A337562 if singletons are considered coprime.
A337605*6 counts these compositions of length 3.
A337667 is the non-strict version, ranked by A337666.
A337696 ranks these compositions.
A051185 and A305843 (covering) count pairwise intersecting set-systems.
A101268 counts pairwise coprime or singleton compositions.
A200976 and A328673 are the unordered version.
A233564 ranks strict compositions.
A318749 is the version for factorizations, with non-strict version A319786.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
A337694 lists numbers with no two relatively prime prime indices.

Programs

  • Mathematica
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&&stabQ[#,CoprimeQ]&]],{n,0,30}]

A337987 Odd numbers whose distinct prime indices are pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 93, 95, 99, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 201, 205, 207, 209, 215, 217, 219, 221, 225, 245, 249, 253, 255, 265, 275, 279, 287, 291, 295, 297, 309, 323, 327, 329, 335, 341, 355, 363, 369
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of integer partitions with no 1's whose distinct parts are pairwise coprime (A338315). The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     15: {2,3}      135: {2,2,2,3}    215: {3,14}
     33: {2,5}      141: {2,15}       217: {4,11}
     35: {3,4}      143: {5,6}        219: {2,21}
     45: {2,2,3}    145: {3,10}       221: {6,7}
     51: {2,7}      153: {2,2,7}      225: {2,2,3,3}
     55: {3,5}      155: {3,11}       245: {3,4,4}
     69: {2,9}      161: {4,9}        249: {2,23}
     75: {2,3,3}    165: {2,3,5}      253: {5,9}
     77: {4,5}      175: {3,3,4}      255: {2,3,7}
     85: {3,7}      177: {2,17}       265: {3,16}
     93: {2,11}     187: {5,7}        275: {3,3,5}
     95: {3,8}      201: {2,19}       279: {2,2,11}
     99: {2,2,5}    205: {3,13}       287: {4,13}
    119: {4,7}      207: {2,2,9}      291: {2,25}
    123: {2,13}     209: {5,8}        295: {3,17}
		

Crossrefs

A304711 is the not necessarily odd version, with squarefree case A302797.
A337694 is a pairwise non-coprime instead of pairwise coprime version.
A337984 is the squarefree case.
A338315 counts the partitions with these Heinz numbers.
A338316 considers singletons coprime.
A007359 counts partitions into singleton or pairwise coprime parts with no 1's, with Heinz numbers A302568.
A304709 counts partitions whose distinct parts are pairwise coprime.
A327516 counts pairwise coprime partitions, with Heinz numbers A302696.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228.
A337667 counts pairwise non-coprime compositions, ranked by A337666.
A337697 counts pairwise coprime compositions with no 1's.
A318717 counts pairwise non-coprime strict partitions, with Heinz numbers A318719.

Programs

  • Mathematica
    Select[Range[1,100,2],CoprimeQ@@Union[PrimePi/@First/@FactorInteger[#]]&]

A337696 Numbers k such that the k-th composition in standard order (A066099) is strict and pairwise non-coprime, meaning the parts are distinct and any two of them have a common divisor > 1.

Original entry on oeis.org

0, 2, 4, 8, 16, 32, 34, 40, 64, 128, 130, 160, 256, 260, 288, 512, 514, 520, 544, 640, 1024, 2048, 2050, 2052, 2056, 2082, 2088, 2176, 2178, 2208, 2304, 2560, 2568, 2592, 4096, 8192, 8194, 8200, 8224, 8226, 8232, 8320, 8704, 8706, 8832, 10240, 10248, 10368
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2020

Keywords

Comments

Differs from A291165 in having 1090535424, corresponding to the composition (6,10,15).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
       0: ()        512: (10)       2304: (3,9)
       2: (2)       514: (8,2)      2560: (2,10)
       4: (3)       520: (6,4)      2568: (2,6,4)
       8: (4)       544: (4,6)      2592: (2,4,6)
      16: (5)       640: (2,8)      4096: (13)
      32: (6)      1024: (11)       8192: (14)
      34: (4,2)    2048: (12)       8194: (12,2)
      40: (2,4)    2050: (10,2)     8200: (10,4)
      64: (7)      2052: (9,3)      8224: (8,6)
     128: (8)      2056: (8,4)      8226: (8,4,2)
     130: (6,2)    2082: (6,4,2)    8232: (8,2,4)
     160: (2,6)    2088: (6,2,4)    8320: (6,8)
     256: (9)      2176: (4,8)      8704: (4,10)
     260: (6,3)    2178: (4,6,2)    8706: (4,8,2)
     288: (3,6)    2208: (4,2,6)    8832: (4,2,8)
		

Crossrefs

A318719 gives the Heinz numbers of the unordered version, with non-strict version A337694.
A337667 counts the non-strict version.
A337983 counts these compositions, with unordered version A318717.
A051185 counts intersecting set-systems, with spanning case A305843.
A200976 and A328673 count the unordered non-strict version.
A337462 counts pairwise coprime compositions.
A318749 counts pairwise non-coprime factorizations, with strict case A319786.
All of the following pertain to compositions in standard order (A066099):
- A000120 is length.
- A070939 is sum.
- A124767 counts runs.
- A233564 ranks strict compositions.
- A272919 ranks constant compositions.
- A333219 is Heinz number.
- A333227 ranks pairwise coprime compositions, or A335235 if singletons are considered coprime.
- A333228 ranks compositions whose distinct parts are pairwise coprime.
- A335236 ranks compositions neither a singleton nor pairwise coprime.
- A337561 is the pairwise coprime instead of pairwise non-coprime version, or A337562 if singletons are considered coprime.
- A337666 ranks the non-strict version.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Select[Range[0,1000],UnsameQ@@stc[#]&&stabQ[stc[#],CoprimeQ]&]

Formula

Intersection of A337666 and A233564.

A338316 Odd numbers whose distinct prime indices are pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 45, 47, 49, 51, 53, 55, 59, 61, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 89, 93, 95, 97, 99, 101, 103, 107, 109, 113, 119, 121, 123, 125, 127, 131, 135, 137, 139, 141, 143, 145, 149, 151
Offset: 1

Views

Author

Gus Wiseman, Oct 24 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. a(n) gives the n-th Heinz number of an integer partition with no 1's and pairwise coprime distinct parts, where a singleton is always considered coprime (A338317).

Examples

			The sequence of terms together with their prime indices begins:
      1: {}          33: {2,5}       71: {20}
      3: {2}         35: {3,4}       73: {21}
      5: {3}         37: {12}        75: {2,3,3}
      7: {4}         41: {13}        77: {4,5}
      9: {2,2}       43: {14}        79: {22}
     11: {5}         45: {2,2,3}     81: {2,2,2,2}
     13: {6}         47: {15}        83: {23}
     15: {2,3}       49: {4,4}       85: {3,7}
     17: {7}         51: {2,7}       89: {24}
     19: {8}         53: {16}        93: {2,11}
     23: {9}         55: {3,5}       95: {3,8}
     25: {3,3}       59: {17}        97: {25}
     27: {2,2,2}     61: {18}        99: {2,2,5}
     29: {10}        67: {19}       101: {26}
     31: {11}        69: {2,9}      103: {27}
		

Crossrefs

A338315 does not consider singletons coprime, with Heinz numbers A337987.
A338317 counts the partitions with these Heinz numbers.
A337694 is a pairwise non-coprime instead of pairwise coprime version.
A007359 counts singleton or pairwise coprime partitions with no 1's, with Heinz numbers A302568.
A101268 counts pairwise coprime or singleton compositions, ranked by A335235.
A302797 lists squarefree numbers whose distinct parts are pairwise coprime.
A304709 counts partitions whose distinct parts are pairwise coprime, with Heinz numbers A304711.
A327516 counts pairwise coprime partitions, ranked by A302696.
A337485 counts pairwise coprime partitions with no 1's, with Heinz numbers A337984.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228.
A337697 counts pairwise coprime compositions with no 1's.

Programs

  • Mathematica
    Select[Range[1,100,2],#==1||PrimePowerQ[#]||CoprimeQ@@Union[PrimePi/@First/@FactorInteger[#]]&]
Previous Showing 11-20 of 23 results. Next