A342062
a(n) is the number of divisors of prime(n)^8 - 1.
Original entry on oeis.org
8, 24, 48, 84, 96, 192, 192, 288, 224, 192, 576, 576, 672, 2304, 1024, 768, 768, 192, 768, 336, 672, 1024, 3072, 1344, 864, 576, 448, 1152, 1536, 512, 2112, 768, 1792, 768, 1152, 1344, 2304, 960, 896, 1536, 1728, 1152, 2560, 1280, 1728, 504, 1536, 2304, 1536
Offset: 1
n prime(n) factorization of prime(n)^8 - 1 a(n)
-- -------- --------------------------------------- ----
1 2 3 * 5 * 17 8
2 3 2^5 * 5 * 41 24
3 5 2^5 * 3 * 13 * 313 48
4 7 2^6 * 3 * 5^2 * 1201 84
5 11 2^5 * 3 * 5 * 61 * 7321 96
6 13 2^5 * 3 * 5 * 7 * 17 * 14281 192
7 17 2^7 * 3^2 * 5 * 29 * 41761 192
8 19 2^5 * 3^2 * 5 * 17 * 181 * 3833 288
9 23 2^6 * 3 * 5 * 11 * 53 * 139921 224
10 29 2^5 * 3 * 5 * 7 * 421 * 353641 192
11 31 2^8 * 3 * 5 * 13 * 37 * 409 * 1129 576
12 37 2^5 * 3^2 * 5 * 19 * 89 * 137 * 10529 576
13 41 2^6 * 3 * 5 * 7 * 29^2 * 137 * 10313 672
...
20 71 2^6 * 3^2 * 5 * 7 * 2521 * 12705841 336
-
f:= n -> numtheory:-tau(ithprime(n)^8-1):
map(f, [$1..100]); # Robert Israel, Feb 28 2021
-
a[n_] := DivisorSigma[0, Prime[n]^8 - 1]; Array[a, 50] (* Amiram Eldar, Feb 27 2021 *)
-
a(n) = numdiv(prime(n)^8-1); \\ Michel Marcus, Feb 27 2021
A350780
Numbers that are the number of divisors of p^2 - 1 for some prime p.
Original entry on oeis.org
2, 4, 8, 10, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 70, 72, 80, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 136, 140, 144, 150, 152, 156, 160, 162, 168, 176, 180, 182, 184, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 228
Offset: 1
184 is a term: p = 111149057 is a prime, and p^2 - 1 = (p-1)*(p+1) = 2^22 * 3 * 53 * 18524843, which has 23*2*2*2 = 184 divisors.
190 is not a term: 190 = 2 * 5 * 19, so a number with 190 divisors must be of the form q^189, q^94 * r, q^37 * r^4, q^18 * r^9, or q^18 * r^4 * s, and for every prime p > 3, p^2 - 1 is a multiple of 24 = 2^3 * 3, so all the forms with 190 divisors are easily ruled out except for q^18 * r^4 * s. If p^2 - 1 = q^18 * r^4 * s, then it's one of the products 2^18 * 3^4 * s, 2^18 * r^4 * 3, 3^18 * 2^4 * s, or q^18 * 2^4 * 3. Each of these can be shown to be impossible by examining all possible ways of factoring the product into two even factors (p-1 and p+1) that differ by exactly two.
From _Jianing Song_, Feb 11 2025: (Start)
Let Omega = A001222, k be an even number and p be a prime.
- Omega(k) <= 2. If odd p != 3, 7 (not necessarily prime) satisfies tau(p^2 - 1) = k = 2q for prime q, then p^2 - 1 = 2^(q-1)*P for some prime P, so (p-1,p+1) = (2^(q-2),2P) or (2P,2^(q-2)), which means that P = 2^(q-3) +- 1. Note that "-" is impossible since q-3 is even, so we have q = 2^r + 3, P = 2^2^r + 1, and p = 2^(2^r+1) + 1 for some r. In particular, p must be divisible by 3, so p cannot be prime.
- Omega(k) = 3, or k = 16, 24, 36, or 54. Then tau(p^2 - 1) = k has finitely many solutions p == 1, 5 (mod 6) (not necessarily prime). See my first pdf link in the Links section for a proof. In fact, it seems that if we require p to be prime, then k <= 518, and the complete list of (k,p), Omega(k) = 3 is (k,p) = (8,5), (18,17), (20,23), (28,31), (30,73), (42,97), (70,2593), (182,1492993), and (518,4803028329503971873=32*3^36+1).
- If k/2 has only prime factors congruent to 1 modulo 4, then tau(p^2 - 1) = k has no solutions for odd p. See my second pdf link in the Links section for a proof.
- If k/2 has only prime factors congruent to 1 modulo 2*r for some odd r >= 3, then tau(p^2 - 1) = k for odd p implies that p is of the form p = 2^(2*r-1)*M^(2*r) + 1 for some M.
- In general, if d(x) = k, then the largest exponent in the canonical factorization of x must be at least gpf(k)-1, where gpf = A006530 is the largest prime factor function. So if d(p^2 - 1) = k, then one of p-1 and p+1 must be divisible by M^(gpf(k)-1) for some odd prime M or by 2^(gpf(k)-2).
Conjecture: if Omega(k) >= 4, k != 16, 24, 36, or 54, and k/2 has a prime factor not congruent to 1 modulo 4, then tau(p^2 - 1) = k has infinitely many solutions. (End)
A342063
Primes p such that p^8 - 1 has fewer than 384 divisors.
Original entry on oeis.org
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 61, 71
Offset: 1
p =
n a(n) factorization of p^8 - 1 a(n)
-- ---- ------------------------------------- ----
1 2 3 * 5 * 17 8
2 3 2^5 * 5 * 41 24
3 5 2^5 * 3 * 13 * 313 48
4 7 2^6 * 3 * 5^2 * 1201 84
5 11 2^5 * 3 * 5 * 61 * 7321 96
6 13 2^5 * 3 * 5 * 7 * 17 * 14281 192
7 17 2^7 * 3^2 * 5 * 29 * 41761 192
8 19 2^5 * 3^2 * 5 * 17 * 181 * 3833 288
9 23 2^6 * 3 * 5 * 11 * 53 * 139921 224
10 29 2^5 * 3 * 5 * 7 * 421 * 353641 192
11 61 2^5 * 3 * 5 * 31 * 1861 * 6922921 192
12 71 2^6 * 3^2 * 5 * 7 * 2521 * 12705841 336
A342064
Primes p such that p^8 - 1 has 384 divisors.
Original entry on oeis.org
821, 997, 2819, 6619, 17827, 20947, 24917, 42709, 43411, 46141, 49261, 51691, 80077, 108803, 158981, 159539, 161341, 171659, 202667, 228611, 268573, 304477, 315803, 350971, 420781, 447683, 463459, 816709, 848227, 887989, 953773, 991811, 1056829, 1131379
Offset: 1
p =
n a(n) factorization of p^8 - 1
- ----- -----------------------------------------------------
1 821 2^5 * 3 * 5 * 41 * 137 * 337021 * 227165634841
2 997 2^5 * 3 * 5 * 83 * 499 * 99401 * 494026946041
3 2819 2^5 * 3 * 5 * 47 * 1409 * 3973381 * 31575505195561
4 6619 2^5 * 3 * 5 * 331 * 1103 * 21905581 * 959708914083961
A341661
Primes p such that p^4 - 1 has fewer than 160 divisors.
Original entry on oeis.org
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 59, 61, 71, 79, 101
Offset: 1
p =
n a(n) p^4 - 1 factorization of p^4 - 1 tau(p^4 - 1)
-- ---- --------- ------------------------- ------------
1 2 15 3 * 5 4
2 3 80 2^4 * 5 10
3 5 624 2^4 * 3 * 13 20
4 7 2400 2^5 * 3 * 5^2 36
5 11 14640 2^4 * 3 * 5 * 61 40
6 13 28560 2^4 * 3 * 5 * 7 * 17 80
7 17 83520 2^6 * 3^2 * 5 * 29 84
8 19 130320 2^4 * 3^2 * 5 * 181 60
9 23 279840 2^5 * 3 * 5 * 11 * 53 96
10 29 707280 2^4 * 3 * 5 * 7 * 421 80
11 31 923520 2^7 * 3 * 5 * 13 * 37 128
12 37 1874160 2^4 * 3^2 * 5 * 19 * 137 120
13 41 2825760 2^5 * 3 * 5 * 7 * 29^2 144
14 59 12117360 2^4 * 3 * 5 * 29 * 1741 80
15 61 13845840 2^4 * 3 * 5 * 31 * 1861 80
16 71 25411680 2^5 * 3^2 * 5 * 7 * 2521 144
17 79 38950080 2^6 * 3 * 5 * 13 * 3121 112
18 101 104060400 2^4 * 3 * 5^2 * 17 * 5101 120
A341662
Primes p such that p^4 - 1 has 160 divisors.
Original entry on oeis.org
53, 67, 131, 139, 227, 277, 283, 347, 383, 641, 653, 661, 821, 877, 997, 1069, 1181, 1213, 1811, 2083, 2389, 2459, 2819, 3803, 4021, 4253, 4723, 6619, 6829, 7213, 7933, 8069, 9013, 9187, 10589, 11261, 16139, 17827, 18133, 18587, 19309, 19541, 20477, 20947
Offset: 1
p =
n a(n) p^4 - 1 factorization of p^4 - 1
-- ---- ------------ -------------------------------
1 53 7890480 2^4 * 3^3 * 5 * 13 * 281
2 67 20151120 2^4 * 3 * 5 * 11 * 17 * 449
3 131 294499920 2^4 * 3 * 5 * 11 * 13 * 8581
4 139 373301040 2^4 * 3 * 5 * 7 * 23 * 9661
5 227 2655237840 2^4 * 3 * 5 * 19 * 113 * 5153
6 277 5887339440 2^4 * 3 * 5 * 23 * 139 * 7673
7 283 6414247920 2^4 * 3 * 5 * 47 * 71 * 8009
8 347 14498327280 2^4 * 3 * 5 * 29 * 173 * 12041
9 383 21517662720 2^9 * 3 * 5 * 191 * 14669
10 641 168823196160 2^9 * 3 * 5 * 107 * 205441
11 653 181824635280 2^4 * 3 * 5 * 109 * 163 * 42641
-
Select[Range[21000], PrimeQ[#] && DivisorSigma[0, #^4 - 1] == 160 &] (* Amiram Eldar, Feb 26 2021 *)
-
isok(p) = isprime(p) && (numdiv(p^4-1) == 160); \\ Michel Marcus, Feb 26 2021
A341664
a(n) is the number of divisors of prime(n)^5 - 1.
Original entry on oeis.org
2, 6, 12, 8, 12, 12, 10, 24, 8, 12, 48, 72, 24, 16, 32, 48, 64, 72, 32, 96, 24, 16, 8, 64, 96, 96, 32, 16, 96, 80, 24, 48, 64, 32, 48, 32, 96, 160, 32, 24, 16, 108, 96, 28, 72, 48, 96, 128, 8, 48, 32, 16, 120, 60, 36, 8, 36, 96, 24, 192, 64, 24, 96, 48, 64, 48
Offset: 1
p = factorization
n prime(n) p^5 - 1 of p^5 - 1 a(n)
- -------- ------- ------------------ ----
1 2 31 31 2
2 3 242 2 * 11^2 6
3 5 3124 2^2 * 11 * 71 12
4 7 16806 2 * 3 * 2801 8
5 11 161050 2 * 5^2 * 3221 12
6 13 371292 2^2 * 3 * 30941 12
7 17 1419856 2^4 * 88741 10
8 19 2476098 2 * 3^2 * 151 * 911 24
9 23 6436342 2 * 11 * 292561 8
...
-
a[n_] := DivisorSigma[0, Prime[n]^5 - 1]; Array[a, 50] (* Amiram Eldar, Feb 26 2021 *)
-
a(n) = numdiv(prime(n)^5-1); \\ Michel Marcus, Feb 26 2021
A341665
Primes p such that p^5 - 1 has 8 divisors.
Original entry on oeis.org
7, 23, 83, 227, 263, 359, 479, 503, 563, 1187, 2999, 3803, 4703, 4787, 4919, 5939, 6599, 8819, 10667, 14159, 16139, 16187, 18119, 21227, 22943, 25847, 26003, 26903, 27827, 29123, 29339, 29663, 36263, 43403, 44519, 44963, 46199, 47123, 48947, 49103, 49499
Offset: 1
p = factorization
n a(n) p^5 - 1 of (p^5 - 1)
- ---- -------------- ---------------------
1 7 16806 2 * 3 * 2801
2 23 6436342 2 * 11 * 292561
3 83 3939040642 2 * 41 * 48037081
4 227 602738989906 2 * 113 * 2666986681
5 263 1258284197542 2 * 131 * 4802611441
6 359 5963102065798 2 * 179 * 16656709681
7 479 25216079618398 2 * 239 * 52753304641
8 503 32198817702742 2 * 251 * 64141071121
...
-
Select[Range[50000], PrimeQ[#] && DivisorSigma[0, #^5 - 1] == 8 &] (* Amiram Eldar, Feb 26 2021 *)
-
isok(p) = isprime(p) && (numdiv(p^5-1) == 8); \\ Michel Marcus, Feb 26 2021
A341666
Primes p such that p^6 - 1 has 384 divisors.
Original entry on oeis.org
29, 43, 59, 83, 157, 193, 317, 1093, 1373, 1523, 2803, 3557, 3677, 3733, 12227, 13093, 20507, 25933, 28163, 29243, 32443, 33493, 38603, 53917, 100523, 109883, 122117, 134363, 140197, 190573, 236723, 242773, 249397, 256757, 258403, 274237, 299723, 333283
Offset: 1
p =
n a(n) factorization of p^6 - 1
- ---- ------------------------------------------------------
1 29 2^3 * 3^2 * 5 * 7 * 13 * 67 * 271
2 43 2^3 * 3^2 * 7 * 11 * 13 * 139 * 631
3 59 2^3 * 3^2 * 5 * 7 * 29 * 163 * 3541
4 83 2^3 * 3^2 * 7 * 19 * 41 * 367 * 2269
5 157 2^3 * 3^2 * 7 * 13 * 79 * 3499 * 8269
6 193 2^7 * 3^2 * 7 * 97 * 1783 * 37057
7 317 2^3 * 3^2 * 7 * 53 * 79 * 14401 * 33391
8 1093 2^3 * 3^2 * 7 * 13 * 547 * 398581 * 1193557
9 1373 2^3 * 3^2 * 7^3 * 229 * 627919 * 1886503
-
Select[Range[350000], PrimeQ[#] && DivisorSigma[0, #^6 - 1] == 384 &] (* Amiram Eldar, Feb 27 2021 *)
-
isok(p) = isprime(p) && (numdiv(p^6-1) == 384); \\ Michel Marcus, Feb 27 2021
A341667
Primes p such that p^6 - 1 has fewer than 384 divisors.
Original entry on oeis.org
2, 3, 5, 7, 11, 13, 17, 19, 23, 41, 53, 71, 73, 167
Offset: 1
p =
n a(n) factorization of p^6 - 1 tau(p^6 - 1)
-- ---- --------------------------------- ------------
1 2 3^2 * 7 6
2 3 2^3 * 7 * 13 16
3 5 2^3 * 3^2 * 7 * 31 48
4 7 2^4 * 3^2 * 19 * 43 60
5 11 2^3 * 3^2 * 5 * 7 * 19 * 37 192
6 13 2^3 * 3^2 * 7 * 61 * 157 96
7 17 2^5 * 3^3 * 7 * 13 * 307 192
8 19 2^3 * 3^3 * 5 * 7^3 * 127 256
9 23 2^4 * 3^2 * 7 * 11 * 13^2 * 79 360
10 41 2^4 * 3^2 * 5 * 7 * 547 * 1723 240
11 53 2^3 * 3^4 * 7 * 13 * 409 * 919 320
12 71 2^4 * 3^3 * 5 * 7 * 1657 * 5113 320
13 73 2^4 * 3^3 * 7 * 37 * 751 * 1801 320
14 167 2^4 * 3^2 * 7 * 83 * 9241 * 28057 240
Comments