cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A342062 a(n) is the number of divisors of prime(n)^8 - 1.

Original entry on oeis.org

8, 24, 48, 84, 96, 192, 192, 288, 224, 192, 576, 576, 672, 2304, 1024, 768, 768, 192, 768, 336, 672, 1024, 3072, 1344, 864, 576, 448, 1152, 1536, 512, 2112, 768, 1792, 768, 1152, 1344, 2304, 960, 896, 1536, 1728, 1152, 2560, 1280, 1728, 504, 1536, 2304, 1536
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 27 2021

Keywords

Comments

a(n) >= 384 for n > 20.

Examples

			   n  prime(n)      factorization of prime(n)^8 - 1      a(n)
  --  --------  ---------------------------------------  ----
   1      2           3   * 5   * 17                        8
   2      3     2^5       * 5   * 41                       24
   3      5     2^5 * 3         * 13 * 313                 48
   4      7     2^6 * 3   * 5^2 * 1201                     84
   5     11     2^5 * 3   * 5   * 61 * 7321                96
   6     13     2^5 * 3   * 5   * 7 * 17 * 14281          192
   7     17     2^7 * 3^2 * 5   * 29 * 41761              192
   8     19     2^5 * 3^2 * 5   * 17 * 181 * 3833         288
   9     23     2^6 * 3   * 5   * 11 * 53 * 139921        224
  10     29     2^5 * 3   * 5   * 7 * 421 * 353641        192
  11     31     2^8 * 3   * 5   * 13 * 37 * 409 * 1129    576
  12     37     2^5 * 3^2 * 5   * 19 * 89 * 137 * 10529   576
  13     41     2^6 * 3   * 5   * 7 * 29^2 * 137 * 10313  672
  ...
  20     71     2^6 * 3^2 * 5   * 7 * 2521 * 12705841     336
		

Crossrefs

Programs

  • Maple
    f:= n -> numtheory:-tau(ithprime(n)^8-1):
    map(f, [$1..100]); # Robert Israel, Feb 28 2021
  • Mathematica
    a[n_] := DivisorSigma[0, Prime[n]^8 - 1]; Array[a, 50] (* Amiram Eldar, Feb 27 2021 *)
  • PARI
    a(n) = numdiv(prime(n)^8-1); \\ Michel Marcus, Feb 27 2021

Formula

a(n) = A000005(A000040(n)^8 - 1).

A350780 Numbers that are the number of divisors of p^2 - 1 for some prime p.

Original entry on oeis.org

2, 4, 8, 10, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 70, 72, 80, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 136, 140, 144, 150, 152, 156, 160, 162, 168, 176, 180, 182, 184, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 228
Offset: 1

Views

Author

Jon E. Schoenfield, May 02 2022

Keywords

Comments

For all primes p > 73, tau(p^2 - 1) >= A309906(2) = 32.

Examples

			184 is a term: p = 111149057 is a prime, and p^2 - 1 = (p-1)*(p+1) = 2^22 * 3 * 53 * 18524843, which has 23*2*2*2 = 184 divisors.
190 is not a term: 190 = 2 * 5 * 19, so a number with 190 divisors must be of the form q^189, q^94 * r, q^37 * r^4, q^18 * r^9, or q^18 * r^4 * s, and for every prime p > 3, p^2 - 1 is a multiple of 24 = 2^3 * 3, so all the forms with 190 divisors are easily ruled out except for q^18 * r^4 * s. If p^2 - 1 = q^18 * r^4 * s, then it's one of the products 2^18 * 3^4 * s, 2^18 * r^4 * 3, 3^18 * 2^4 * s, or q^18 * 2^4 * 3. Each of these can be shown to be impossible by examining all possible ways of factoring the product into two even factors (p-1 and p+1) that differ by exactly two.
From _Jianing Song_, Feb 11 2025: (Start)
Let Omega = A001222, k be an even number and p be a prime.
 - Omega(k) <= 2. If odd p != 3, 7 (not necessarily prime) satisfies tau(p^2 - 1) = k = 2q for prime q, then p^2 - 1 = 2^(q-1)*P for some prime P, so (p-1,p+1) = (2^(q-2),2P) or (2P,2^(q-2)), which means that P = 2^(q-3) +- 1. Note that "-" is impossible since q-3 is even, so we have q = 2^r + 3, P = 2^2^r + 1, and p = 2^(2^r+1) + 1 for some r. In particular, p must be divisible by 3, so p cannot be prime.
 - Omega(k) = 3, or k = 16, 24, 36, or 54. Then tau(p^2 - 1) = k has finitely many solutions p == 1, 5 (mod 6) (not necessarily prime). See my first pdf link in the Links section for a proof. In fact, it seems that if we require p to be prime, then k <= 518, and the complete list of (k,p), Omega(k) = 3 is (k,p) = (8,5), (18,17), (20,23), (28,31), (30,73), (42,97), (70,2593), (182,1492993), and (518,4803028329503971873=32*3^36+1).
 - If k/2 has only prime factors congruent to 1 modulo 4, then tau(p^2 - 1) = k has no solutions for odd p. See my second pdf link in the Links section for a proof.
 - If k/2 has only prime factors congruent to 1 modulo 2*r for some odd r >= 3, then tau(p^2 - 1) = k for odd p implies that p is of the form p = 2^(2*r-1)*M^(2*r) + 1 for some M.
 - In general, if d(x) = k, then the largest exponent in the canonical factorization of x must be at least gpf(k)-1, where gpf = A006530 is the largest prime factor function. So if d(p^2 - 1) = k, then one of p-1 and p+1 must be divisible by M^(gpf(k)-1) for some odd prime M or by 2^(gpf(k)-2).
Conjecture: if Omega(k) >= 4, k != 16, 24, 36, or 54, and k/2 has a prime factor not congruent to 1 modulo 4, then tau(p^2 - 1) = k has infinitely many solutions. (End)
		

Crossrefs

Programs

A342063 Primes p such that p^8 - 1 has fewer than 384 divisors.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 61, 71
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 27 2021

Keywords

Comments

For all primes p > 71, p^8 - 1 has at least A309906(8)=384 divisors.

Examples

			      p =
   n  a(n)        factorization of p^8 - 1         a(n)
  --  ----  -------------------------------------  ----
   1    2         3   * 5   * 17                      8
   2    3   2^5       * 5   * 41                     24
   3    5   2^5 * 3         * 13 * 313               48
   4    7   2^6 * 3   * 5^2 * 1201                   84
   5   11   2^5 * 3   * 5   * 61 * 7321              96
   6   13   2^5 * 3   * 5   * 7 * 17 * 14281        192
   7   17   2^7 * 3^2 * 5   * 29 * 41761            192
   8   19   2^5 * 3^2 * 5   * 17 * 181 * 3833       288
   9   23   2^6 * 3   * 5   * 11 * 53 * 139921      224
  10   29   2^5 * 3   * 5   * 7 * 421 * 353641      192
  11   61   2^5 * 3   * 5   * 31 * 1861 * 6922921   192
  12   71   2^6 * 3^2 * 5   * 7 * 2521 * 12705841   336
		

Crossrefs

A342064 Primes p such that p^8 - 1 has 384 divisors.

Original entry on oeis.org

821, 997, 2819, 6619, 17827, 20947, 24917, 42709, 43411, 46141, 49261, 51691, 80077, 108803, 158981, 159539, 161341, 171659, 202667, 228611, 268573, 304477, 315803, 350971, 420781, 447683, 463459, 816709, 848227, 887989, 953773, 991811, 1056829, 1131379
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 27 2021

Keywords

Comments

Conjecture: sequence is infinite.
For every term p, p^8 - 1 is of the form 2^5 * 3 * 5 * q * r * s * t, where q, r, s, and t are distinct primes > 5 (see Example section).

Examples

			   p =
n  a(n)               factorization of p^8 - 1
- ----- -----------------------------------------------------
1  821  2^5 * 3 * 5 *  41 *  137 *   337021 *    227165634841
2  997  2^5 * 3 * 5 *  83 *  499 *    99401 *    494026946041
3 2819  2^5 * 3 * 5 *  47 * 1409 *  3973381 *  31575505195561
4 6619  2^5 * 3 * 5 * 331 * 1103 * 21905581 * 959708914083961
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[90000]],DivisorSigma[0,#^8-1]==384&] (* Harvey P. Dale, Jul 08 2025 *)

A341661 Primes p such that p^4 - 1 has fewer than 160 divisors.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 59, 61, 71, 79, 101
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 26 2021

Keywords

Comments

For all primes p > 101, p^4 - 1 has at least A309906(4)=160 divisors.

Examples

			      p =
   n  a(n)   p^4 - 1   factorization of p^4 - 1  tau(p^4 - 1)
  --  ----  ---------  ------------------------- ------------
   1    2          15  3 * 5                           4
   2    3          80  2^4 * 5                        10
   3    5         624  2^4 * 3 * 13                   20
   4    7        2400  2^5 * 3 * 5^2                  36
   5   11       14640  2^4 * 3 * 5 * 61               40
   6   13       28560  2^4 * 3 * 5 * 7 * 17           80
   7   17       83520  2^6 * 3^2 * 5 * 29             84
   8   19      130320  2^4 * 3^2 * 5 * 181            60
   9   23      279840  2^5 * 3 * 5 * 11 * 53          96
  10   29      707280  2^4 * 3 * 5 * 7 * 421          80
  11   31      923520  2^7 * 3 * 5 * 13 * 37         128
  12   37     1874160  2^4 * 3^2 * 5 * 19 * 137      120
  13   41     2825760  2^5 * 3 * 5 * 7 * 29^2        144
  14   59    12117360  2^4 * 3 * 5 * 29 * 1741        80
  15   61    13845840  2^4 * 3 * 5 * 31 * 1861        80
  16   71    25411680  2^5 * 3^2 * 5 * 7 * 2521      144
  17   79    38950080  2^6 * 3 * 5 * 13 * 3121       112
  18  101   104060400  2^4 * 3 * 5^2 * 17 * 5101     120
		

Crossrefs

Programs

  • Mathematica
    Select[Range[101], PrimeQ[#] && DivisorSigma[0, #^4 - 1] < 160 &] (* Amiram Eldar, Feb 26 2021 *)

A341662 Primes p such that p^4 - 1 has 160 divisors.

Original entry on oeis.org

53, 67, 131, 139, 227, 277, 283, 347, 383, 641, 653, 661, 821, 877, 997, 1069, 1181, 1213, 1811, 2083, 2389, 2459, 2819, 3803, 4021, 4253, 4723, 6619, 6829, 7213, 7933, 8069, 9013, 9187, 10589, 11261, 16139, 17827, 18133, 18587, 19309, 19541, 20477, 20947
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 26 2021

Keywords

Comments

Conjecture: sequence is infinite.
For every term p, p^4 - 1 is of the form 2^4 * 3 * 5 * q * r * s, where q, r, and s are distinct primes > 5, with three exceptions: p = 53, 383, and 641 (see Example section).

Examples

			      p =
   n  a(n)     p^4 - 1    factorization of p^4 - 1
  --  ----  ------------  -------------------------------
   1    53       7890480  2^4 * 3^3 * 5 * 13 * 281
   2    67      20151120  2^4 * 3 * 5 * 11 * 17 * 449
   3   131     294499920  2^4 * 3 * 5 * 11 * 13 * 8581
   4   139     373301040  2^4 * 3 * 5 * 7 * 23 * 9661
   5   227    2655237840  2^4 * 3 * 5 * 19 * 113 * 5153
   6   277    5887339440  2^4 * 3 * 5 * 23 * 139 * 7673
   7   283    6414247920  2^4 * 3 * 5 * 47 * 71 * 8009
   8   347   14498327280  2^4 * 3 * 5 * 29 * 173 * 12041
   9   383   21517662720  2^9 * 3 * 5 * 191 * 14669
  10   641  168823196160  2^9 * 3 * 5 * 107 * 205441
  11   653  181824635280  2^4 * 3 * 5 * 109 * 163 * 42641
		

Crossrefs

Programs

  • Mathematica
    Select[Range[21000], PrimeQ[#] && DivisorSigma[0, #^4 - 1] == 160 &] (* Amiram Eldar, Feb 26 2021 *)
  • PARI
    isok(p) = isprime(p) && (numdiv(p^4-1) == 160); \\ Michel Marcus, Feb 26 2021

A341664 a(n) is the number of divisors of prime(n)^5 - 1.

Original entry on oeis.org

2, 6, 12, 8, 12, 12, 10, 24, 8, 12, 48, 72, 24, 16, 32, 48, 64, 72, 32, 96, 24, 16, 8, 64, 96, 96, 32, 16, 96, 80, 24, 48, 64, 32, 48, 32, 96, 160, 32, 24, 16, 108, 96, 28, 72, 48, 96, 128, 8, 48, 32, 16, 120, 60, 36, 8, 36, 96, 24, 192, 64, 24, 96, 48, 64, 48
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 26 2021

Keywords

Comments

a(n) >= A309906(5) = 8 for n > 2.

Examples

			       p =                factorization
  n  prime(n)  p^5 - 1      of p^5 - 1      a(n)
  -  --------  -------  ------------------  ----
  1      2          31  31                    2
  2      3         242  2 * 11^2              6
  3      5        3124  2^2 * 11 * 71        12
  4      7       16806  2 * 3 * 2801          8
  5     11      161050  2 * 5^2 * 3221       12
  6     13      371292  2^2 * 3 * 30941      12
  7     17     1419856  2^4 * 88741          10
  8     19     2476098  2 * 3^2 * 151 * 911  24
  9     23     6436342  2 * 11 * 292561       8
  ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, Prime[n]^5 - 1]; Array[a, 50] (* Amiram Eldar, Feb 26 2021 *)
  • PARI
    a(n) = numdiv(prime(n)^5-1); \\ Michel Marcus, Feb 26 2021

Formula

a(n) = A000005(A000040(n)^5 - 1).

A341665 Primes p such that p^5 - 1 has 8 divisors.

Original entry on oeis.org

7, 23, 83, 227, 263, 359, 479, 503, 563, 1187, 2999, 3803, 4703, 4787, 4919, 5939, 6599, 8819, 10667, 14159, 16139, 16187, 18119, 21227, 22943, 25847, 26003, 26903, 27827, 29123, 29339, 29663, 36263, 43403, 44519, 44963, 46199, 47123, 48947, 49103, 49499
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 26 2021

Keywords

Comments

For each term p, p^5 - 1 = (p-1)*(p^4 + p^3 + p^2 + p + 1) is a number of the form 2*q*r (where q and r are distinct primes): p-1 = 2*q and p^4 + p^3 + p^2 + p + 1 = r.
Conjecture: sequence is infinite.

Examples

			     p =                       factorization
  n  a(n)      p^5 - 1          of (p^5 - 1)
  -  ----  --------------  ---------------------
  1     7           16806  2 *   3 *        2801
  2    23         6436342  2 *  11 *      292561
  3    83      3939040642  2 *  41 *    48037081
  4   227    602738989906  2 * 113 *  2666986681
  5   263   1258284197542  2 * 131 *  4802611441
  6   359   5963102065798  2 * 179 * 16656709681
  7   479  25216079618398  2 * 239 * 52753304641
  8   503  32198817702742  2 * 251 * 64141071121
  ...
		

Crossrefs

Programs

  • Mathematica
    Select[Range[50000], PrimeQ[#] && DivisorSigma[0, #^5 - 1] == 8 &] (* Amiram Eldar, Feb 26 2021 *)
  • PARI
    isok(p) = isprime(p) && (numdiv(p^5-1) == 8); \\ Michel Marcus, Feb 26 2021

A341666 Primes p such that p^6 - 1 has 384 divisors.

Original entry on oeis.org

29, 43, 59, 83, 157, 193, 317, 1093, 1373, 1523, 2803, 3557, 3677, 3733, 12227, 13093, 20507, 25933, 28163, 29243, 32443, 33493, 38603, 53917, 100523, 109883, 122117, 134363, 140197, 190573, 236723, 242773, 249397, 256757, 258403, 274237, 299723, 333283
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 26 2021

Keywords

Comments

Conjecture: sequence is infinite.
For every term p, p^6 - 1 is of the form 2^3 * 3^2 * 7 * q * r * s * t, where q, r, s, and t are distinct primes > 7, with four exceptions: p = 29, 59, 193, and 1373 (see Example section).

Examples

			  p =
n a(n)                factorization of p^6 - 1
- ---- ------------------------------------------------------
1   29 2^3 * 3^2 * 5 * 7   *  13 *     67 *     271
2   43 2^3 * 3^2     * 7   *  11 *     13 *     139 *     631
3   59 2^3 * 3^2 * 5 * 7   *  29 *    163 *    3541
4   83 2^3 * 3^2     * 7   *  19 *     41 *     367 *    2269
5  157 2^3 * 3^2     * 7   *  13 *     79 *    3499 *    8269
6  193 2^7 * 3^2     * 7   *  97 *   1783 *   37057
7  317 2^3 * 3^2     * 7   *  53 *     79 *   14401 *   33391
8 1093 2^3 * 3^2     * 7   *  13 *    547 *  398581 * 1193557
9 1373 2^3 * 3^2     * 7^3 * 229 * 627919 * 1886503
		

Crossrefs

Programs

  • Mathematica
    Select[Range[350000], PrimeQ[#] && DivisorSigma[0, #^6 - 1] == 384 &] (* Amiram Eldar, Feb 27 2021 *)
  • PARI
    isok(p) = isprime(p) && (numdiv(p^6-1) == 384); \\ Michel Marcus, Feb 27 2021

A341667 Primes p such that p^6 - 1 has fewer than 384 divisors.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 41, 53, 71, 73, 167
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 26 2021

Keywords

Comments

For all primes p > 167, p^6 - 1 has at least 384 divisors.

Examples

			      p =
   n  a(n)      factorization of p^6 - 1       tau(p^6 - 1)
  --  ----  ---------------------------------  ------------
   1     2  3^2 * 7                                   6
   2     3  2^3 * 7 * 13                             16
   3     5  2^3 * 3^2 * 7 * 31                       48
   4     7  2^4 * 3^2 * 19 * 43                      60
   5    11  2^3 * 3^2 * 5 * 7 * 19 * 37             192
   6    13  2^3 * 3^2 * 7 * 61 * 157                 96
   7    17  2^5 * 3^3 * 7 * 13 * 307                192
   8    19  2^3 * 3^3 * 5 * 7^3 * 127               256
   9    23  2^4 * 3^2 * 7 * 11 * 13^2 * 79          360
  10    41  2^4 * 3^2 * 5 * 7 * 547 * 1723          240
  11    53  2^3 * 3^4 * 7 * 13 * 409 * 919          320
  12    71  2^4 * 3^3 * 5 * 7 * 1657 * 5113         320
  13    73  2^4 * 3^3 * 7 * 37 * 751 * 1801         320
  14   167  2^4 * 3^2 * 7 * 83 * 9241 * 28057       240
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200], PrimeQ[#] && DivisorSigma[0, #^6 - 1] < 384 &] (* Amiram Eldar, Feb 27 2021 *)
Previous Showing 11-20 of 26 results. Next