cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A330975 Numbers that are not the number of factorizations of n into distinct factors > 1 for any n.

Original entry on oeis.org

11, 13, 20, 23, 24, 26, 28, 29, 30, 35, 36, 37, 39, 41, 45, 47, 48, 49, 50, 51, 53, 58, 60, 62, 63, 65, 66, 68, 69, 71, 72, 73, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 90, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108, 109, 113, 114, 115, 118
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

Warning: I have only confirmed the first three terms. The rest are derived from A045779. - Gus Wiseman, Jan 07 2020

Crossrefs

Complement of A045779.
The non-strict version is A330976.
Factorizations are A001055, with image A045782, with complement A330976.
Strict factorizations are A045778, with image A045779.
The least positive integer with n strict factorizations is A330974(n).

Programs

  • Mathematica
    nn=20;
    fam[n_]:=fam[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[fam[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nds=Length/@Array[Select[fam[#],UnsameQ@@#&]&,2^nn];
    Complement[Range[nn],nds]

A157612 Number of factorizations of n! into distinct factors.

Original entry on oeis.org

1, 1, 1, 2, 5, 16, 57, 253, 1060, 5285, 28762, 191263, 1052276, 8028450, 56576192, 424900240, 2584010916, 24952953943, 178322999025, 1886474434192, 15307571683248, 143131274598786, 1423606577935925, 17668243239613767, 137205093278725072, 1399239022852163764, 15774656316828338767
Offset: 0

Views

Author

Jaume Oliver Lafont, Mar 03 2009

Keywords

Comments

The number of factorizations of (n+1)! into k distinct factors can be arranged into the following triangle:
2! 1;
3! 1, 1;
4! 1, 3, 1;
5! 1, 7, 7, 1;
...

Examples

			3! = 6 = 2*3.
a(3) = 2 because there are 2 factorizations of 3!.
4! = 24 = 2*12 = 3*8 = 4*6 = 2*3*4.
a(4) = 5 because there are 5 factorizations of 4!.
5! = 120 (1)
5! = 2*60 = 3*40 = 4*30 = 5*24 = 6*20 = 8*15 = 10*12 (7)
5! = 2*3*20 = 2*4*15 = 2*5*12 = 2*6*10 = 3*4*10 = 3*5*8 = 4*5*6 (7)
5! = 2*3*4*5 (1)
a(5) = 16 because there are 16 factorizations of 5!.
		

Crossrefs

Cf. A076716, A157017, A157229, A318286. See A157836 for continuation of triangle.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d-1)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(n!$2):
    seq(a(n), n=0..12);  # Alois P. Heinz, May 26 2013
  • Mathematica
    b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d-1]], {d, Divisors[n] ~Complement~ {1, n}}]];
    a[n_] := b[n!, n!];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 16}] (* Jean-François Alcover, Mar 21 2017, after Alois P. Heinz *)
  • PARI
    \\ See A318286 for count.
    a(n)={if(n<=1, 1, count(factor(n!)[,2]))} \\ Andrew Howroyd, Feb 01 2020

Formula

a(n) = A045778(A000142(n)).

Extensions

a(8)-a(12) from Ray Chandler, Mar 07 2009
a(13)-a(17) from Alois P. Heinz, May 26 2013
a(18)-a(19) from Alois P. Heinz, Jan 10 2015
a(20)-a(26) from Andrew Howroyd, Feb 01 2020

A330998 Sorted list containing the least number whose inverse prime shadow (A181821) has each possible nonzero number of factorizations into factors > 1.

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

This is the sorted list of positions of first appearances in A318284 of each element of the range A045782.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The inverse prime shadow of n is the least number whose prime exponents are the prime indices of n.

Examples

			Factorizations of the inverse prime shadows of the initial terms:
    4    8      12     16       36       24       60       48
    2*2  2*4    2*6    2*8      4*9      3*8      2*30     6*8
         2*2*2  3*4    4*4      6*6      4*6      3*20     2*24
                2*2*3  2*2*4    2*18     2*12     4*15     3*16
                       2*2*2*2  3*12     2*2*6    5*12     4*12
                                2*2*9    2*3*4    6*10     2*3*8
                                2*3*6    2*2*2*3  2*5*6    2*4*6
                                3*3*4             3*4*5    3*4*4
                                2*2*3*3           2*2*15   2*2*12
                                                  2*3*10   2*2*2*6
                                                  2*2*3*5  2*2*3*4
                                                           2*2*2*2*3
The corresponding multiset partitions:
    {11}    {111}      {112}      {1111}        {1122}        {1112}
    {1}{1}  {1}{11}    {1}{12}    {1}{111}      {1}{122}      {1}{112}
            {1}{1}{1}  {2}{11}    {11}{11}      {11}{22}      {11}{12}
                       {1}{1}{2}  {1}{1}{11}    {12}{12}      {2}{111}
                                  {1}{1}{1}{1}  {2}{112}      {1}{1}{12}
                                                {1}{1}{22}    {1}{2}{11}
                                                {1}{2}{12}    {1}{1}{1}{2}
                                                {2}{2}{11}
                                                {1}{1}{2}{2}
		

Crossrefs

Taking n instead of the inverse prime shadow of n gives A330972.
Factorizations are A001055, with image A045782, with complement A330976.
Factorizations of inverse prime shadows are A318284.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    nds=Table[Length[facs[Times@@Prime/@nrmptn[n]]],{n,50}];
    Table[Position[nds,i][[1,1]],{i,First/@Gather[nds]}]

A331022 Numbers k such that the number of strict integer partitions of k is a power of 2.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 9, 16, 20, 29, 34, 45
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2020

Keywords

Comments

An integer partition of n is a finite, nonincreasing sequence of positive integers (parts) summing to n. It is strict if the parts are all different. Integer partitions and strict integer partitions are counted by A000041 and A000009 respectively.
Conjecture: This sequence is finite.
Conjecture: The analogous sequence for non-strict partitions is: 0, 1, 2.
Next term > 5*10^4 if it exists. - Seiichi Manyama, Jan 12 2020

Examples

			The strict integer partitions of the initial terms:
  (1)  (2)  (3)    (4)    (6)      (9)
            (2,1)  (3,1)  (4,2)    (5,4)
                          (5,1)    (6,3)
                          (3,2,1)  (7,2)
                                   (8,1)
                                   (4,3,2)
                                   (5,3,1)
                                   (6,2,1)
		

Crossrefs

The version for primes instead of powers of 2 is A035359.
The version for factorizations instead of strict partitions is A330977.
Numbers whose number of partitions is prime are A046063.

Programs

  • Mathematica
    Select[Range[0,1000],IntegerQ[Log[2,PartitionsQ[#]]]&]

A318287 Number of non-isomorphic strict multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 3, 4, 5, 3, 7, 4, 7, 9, 5, 5, 12, 6, 12, 14, 10, 8, 13, 12, 14, 14, 18, 10, 34
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(20) = 12 strict multiset partitions of {1,1,1,2,3}:
  {{1,1,1,2,3}}
  {{1},{1,1,2,3}}
  {{2},{1,1,1,3}}
  {{1,1},{1,2,3}}
  {{1,2},{1,1,3}}
  {{2,3},{1,1,1}}
  {{1},{2},{1,1,3}}
  {{1},{1,1},{2,3}}
  {{1},{1,2},{1,3}}
  {{2},{3},{1,1,1}}
  {{2},{1,1},{1,3}}
  {{1},{2},{3},{1,1}}
		

Crossrefs

Formula

a(n) = A318357(A181821(n)).

A337069 Number of strict factorizations of the superprimorial A006939(n).

Original entry on oeis.org

1, 1, 3, 34, 1591, 360144, 442349835, 3255845551937, 156795416820025934, 53452979022001011490033, 138542156296245533221812350867, 2914321438328993304235584538307144802, 528454951438415221505169213611461783474874149, 873544754831735539240447436467067438924478174290477803
Offset: 0

Views

Author

Gus Wiseman, Aug 15 2020

Keywords

Comments

The n-th superprimorial is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).
Also the number of strict multiset partitions of {1,2,2,3,3,3,...,n}, a multiset with i copies of i for i = 1..n.

Examples

			The a(3) = 34 factorizations:
  2*3*4*15  2*3*60   2*180  360
  2*3*5*12  2*4*45   3*120
  2*3*6*10  2*5*36   4*90
  2*4*5*9   2*6*30   5*72
  3*4*5*6   2*9*20   6*60
            2*10*18  8*45
            2*12*15  9*40
            3*4*30   10*36
            3*5*24   12*30
            3*6*20   15*24
            3*8*15   18*20
            3*10*12
            4*5*18
            4*6*15
            4*9*10
            5*6*12
            5*8*9
		

Crossrefs

A022915 counts permutations of the same multiset.
A157612 is the version for factorials instead of superprimorials.
A317829 is the non-strict version.
A337072 is the non-strict version with squarefree factors.
A337073 is the case with squarefree factors.
A000217 counts prime factors (with multiplicity) of superprimorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A045778 counts strict factorizations.
A076954 can be used instead of A006939 (cf. A307895, A325337).
A181818 lists products of superprimorials, with complement A336426.
A322583 counts factorizations into factorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    stfa[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[stfa[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[stfa[chern[n]]],{n,0,3}]
  • PARI
    \\ See A318286 for count.
    a(n) = {if(n==0, 1, count(vector(n, i, i)))} \\ Andrew Howroyd, Sep 01 2020

Formula

a(n) = A045778(A006939(n)).
a(n) = A318286(A002110(n)). - Andrew Howroyd, Sep 01 2020

Extensions

a(7)-a(13) from Andrew Howroyd, Sep 01 2020

A330993 Numbers k such that a multiset whose multiplicities are the prime indices of k has a prime number of multiset partitions.

Original entry on oeis.org

3, 4, 5, 7, 8, 10, 11, 12, 13, 21, 22, 25, 33, 38, 41, 45, 46, 49, 50, 55, 57, 58, 63
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

This multiset (row k of A305936) is generally not the same as the multiset of prime indices of k. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
Also numbers whose inverse prime shadow has a prime number of factorizations. A prime index of k is a number m such that prime(m) divides k. The multiset of prime indices of k is row k of A112798. The inverse prime shadow of k is the least number whose prime exponents are the prime indices of k.

Examples

			The multiset partitions for n = 1..6:
  {11}    {12}    {111}      {1111}        {123}      {1112}
  {1}{1}  {1}{2}  {1}{11}    {1}{111}      {1}{23}    {1}{112}
                  {1}{1}{1}  {11}{11}      {2}{13}    {11}{12}
                             {1}{1}{11}    {3}{12}    {2}{111}
                             {1}{1}{1}{1}  {1}{2}{3}  {1}{1}{12}
                                                      {1}{2}{11}
                                                      {1}{1}{1}{2}
The factorizations for n = 1..8:
  4    6    8      16       30     24       32         60
  2*2  2*3  2*4    2*8      5*6    3*8      4*8        2*30
            2*2*2  4*4      2*15   4*6      2*16       3*20
                   2*2*4    3*10   2*12     2*2*8      4*15
                   2*2*2*2  2*3*5  2*2*6    2*4*4      5*12
                                   2*3*4    2*2*2*4    6*10
                                   2*2*2*3  2*2*2*2*2  2*5*6
                                                       3*4*5
                                                       2*2*15
                                                       2*3*10
                                                       2*2*3*5
		

Crossrefs

The same for powers of 2 (instead of primes) is A330990.
Factorizations are A001055, with image A045782, with complement A330976.
Numbers whose number of integer partitions is prime are A046063.
Numbers whose number of strict integer partitions is prime are A035359.
Numbers whose number of set partitions is prime are A051130.
Numbers whose number of factorizations is a power of 2 are A330977.
The least number with prime(n) factorizations is A330992(n).
Factorizations of a number's inverse prime shadow are A318284.
Numbers with a prime number of factorizations are A330991.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    unsh[n_]:=Times@@MapIndexed[Prime[#2[[1]]]^#1&,Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[30],PrimeQ[Length[facs[unsh[#]]]]&]

Formula

A001055(A181821(a(n))) belongs to A000040.

A331201 Numbers k such that the number of factorizations of k into distinct factors > 1 is a prime number.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 74, 75, 76, 77, 78, 80, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 98, 99, 100, 102
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A080257 in lacking 60.

Examples

			Strict factorizations of selected terms:
  (6)    (12)   (24)     (48)     (216)
  (2*3)  (2*6)  (3*8)    (6*8)    (3*72)
         (3*4)  (4*6)    (2*24)   (4*54)
                (2*12)   (3*16)   (6*36)
                (2*3*4)  (4*12)   (8*27)
                         (2*3*8)  (9*24)
                         (2*4*6)  (12*18)
                                  (2*108)
                                  (3*8*9)
                                  (4*6*9)
                                  (2*3*36)
                                  (2*4*27)
                                  (2*6*18)
                                  (2*9*12)
                                  (3*4*18)
                                  (3*6*12)
                                  (2*3*4*9)
		

Crossrefs

The version for strict integer partitions is A035359.
The version for integer partitions is A046063.
The version for set partitions is A051130.
The non-strict version is A330991.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
Numbers whose number of strict factorizations is odd are A331230.
Numbers whose number of strict factorizations is even are A331231.
The least number with n strict factorizations is A330974(n).

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],PrimeQ[Length[strfacs[#]]]&]

A331230 Numbers k such that the number of factorizations of k into distinct factors > 1 is odd.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 17, 18, 19, 20, 23, 24, 25, 28, 29, 30, 31, 32, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 83, 84, 88, 89, 90, 92, 97, 98, 99, 100, 101, 102
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A319237 in lacking 300.

Crossrefs

The version for strict integer partitions is A001318.
The version for integer partitions is A052002.
The version for set partitions appears to be A032766.
The non-strict version is A331050.
The version for primes (instead of odds) is A331201.
The even version is A331231.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],OddQ[Length[strfacs[#]]]&]

A331231 Numbers k such that the number of factorizations of k into distinct factors > 1 is even.

Original entry on oeis.org

6, 8, 10, 14, 15, 16, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 64, 65, 69, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 96, 106, 111, 115, 118, 119, 120, 122, 123, 125, 129, 133, 134, 141, 142, 143, 144, 145, 146, 155, 158, 159, 160, 161, 166
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A319238 in having 300.

Crossrefs

The version for integer partitions is A001560.
The version for strict integer partitions is A090864.
The version for set partitions appears to be A016789.
The non-strict version is A331051.
The version for primes (instead of evens) is A331201.
The odd version is A331230.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],EvenQ[Length[strfacs[#]]]&]
Previous Showing 11-20 of 22 results. Next