cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A116392 Riordan array (1/sqrt(1-2*x-3*x^2), 1/sqrt(1-2*x-3*x^2) -1).

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 7, 13, 7, 1, 19, 42, 32, 10, 1, 51, 131, 128, 60, 13, 1, 141, 406, 475, 292, 97, 16, 1, 393, 1247, 1685, 1267, 561, 143, 19, 1, 1107, 3814, 5800, 5112, 2804, 962, 198, 22, 1, 3139, 11623, 19540, 19624, 12748, 5464, 1522, 262, 25, 1, 8953, 35334
Offset: 0

Views

Author

Paul Barry, Feb 12 2006

Keywords

Comments

Triangle, read by rows, given by [1, 2, -1, -1, 2, 1/2, 1/2, 2, -1, -1, 2, 1/2, 1/2, 2, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 11 2020

Examples

			Triangle begins:
   1;
   1,   1;
   3,   4,   1;
   7,  13,   7,  1;
  19,  42,  32, 10,  1;
  51, 131, 128, 60, 13, 1;
		

Crossrefs

Row sums are A115967. Diagonal sums are A116394.
Cf. A321620.

Programs

  • Magma
    [[(&+[ Binomial(n,m)*(&+[ (&+[ Round((-1)^(k-j)*4^r* Binomial(k,j)*Binomial(j, m-2*r)*Gamma(r+(j+1)/2)/(Factorial(r)*Gamma((j+1)/2))) : r in [0..Floor(n/2)]]) : j in [0..k]]): m in [0..n]]) : k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 23 2019
    
  • Maple
    # The function RiordanSquare is defined in A321620.
    RiordanSquare(1/sqrt(1 - 2*x - 3*x^2), 10); # Peter Luschny, Feb 15 2020
  • Mathematica
    t[n_,k_]:= Sum[(-1)^(k-j)*Binomial[k,j]*Sum[4^r*Binomial[r+(j-1)/2, r]* Binomial[j, n-2*r], {r,0,Floor[n/2]}], {j,0,k}]; Table[Sum[Binomial[n, j]*t[j,k], {j,0,n}] {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, May 23 2019 *)
  • PARI
    t(n,k) = sum(j=0,k, sum(r=0,floor(n/2), (-1)^(k-j)*4^r* binomial(k,j)*binomial(r+(j-1)/2, r)*binomial(j, n-2*r) ));
    T(n,k) = sum(j=0,n, binomial(n,j)*t(j,k)); \\ G. C. Greubel, May 23 2019
    
  • Sage
    [[sum(binomial(n,m)*sum( sum( (-1)^(k-j)*4^r* binomial(k,j)* binomial(r+(j-1)/2, r)*binomial(j, m-2*r) for r in (0..floor(n/2))) for j in (0..k)) for m in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 23 2019

Formula

Number triangle T(n,k) = Sum_{j=0..n} C(n,j)*A116389(j,k).

A132372 T(n, k) counts Schroeder n-paths whose ascent starting at the initial vertex has length k. Triangle T(n,k), read by rows.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 10, 5, 1, 22, 38, 22, 7, 1, 90, 158, 98, 38, 9, 1, 394, 698, 450, 194, 58, 11, 1, 1806, 3218, 2126, 978, 334, 82, 13, 1, 8558, 15310, 10286, 4942, 1838, 526, 110, 15, 1, 41586, 74614, 50746, 25150, 9922, 3142, 778, 142, 17, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 20 2007

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows given by [1,1,2,1,2,1,2,1,2,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938 .
Transpose of triangular array A033878. - Michel Marcus, May 02 2015
The triangle is the Riordan square (A321620) of A155069. - Peter Luschny, Feb 01 2020

Examples

			Triangle begins:
      1;
      1,     1;
      2,     3,     1;
      6,    10,     5,     1;
     22,    38,    22,     7,    1;
     90,   158,    98,    38,    9,    1;
    394,   698,   450,   194,   58,   11,   1;
   1806,  3218,  2126,   978,  334,   82,  13,   1;
   8558, 15310, 10286,  4942, 1838,  526, 110,  15,  1;
  41586, 74614, 50746, 25150, 9922, 3142, 778, 142, 17, 1 ; ...
...
The production matrix M begins:
  1, 1
  1, 2, 1
  1, 2, 2, 1
  1, 2, 2, 2, 1
  1, 2, 2, 2, 2, 1
  ...
		

Crossrefs

Cf. A006318, A103136 (signed version), A033878 (transpose).

Programs

  • Maple
    # The function RiordanSquare is defined in A321620.
    RiordanSquare((3-x-sqrt(1-6*x+x^2))/2, 10); # Peter Luschny, Feb 01 2020
    # Alternative:
    A132372 := proc(dim) # dim is the number of rows requested.
    local T, j, A, k, C, m; m := 1;
    T := [seq([seq(0, j = 0..k)], k = 0..dim-1)];
    A := [seq(ifelse(k = 0, 1 + x, 2 - irem(k, 2)), k = 0..dim-2)];
    C := [seq(1, k = 1..dim+1)]; C[1] := 0;
    for k from 0 to dim - 1 do
        for j from k + 1 by -1 to 2 do
            C[j] := C[j-1] + C[j+1] * A[j-1] od;
        T[m] := [seq(coeff(C[2], x, j), j = 0..k)];
        m := m + 1
    od; ListTools:-Flatten(T) end:
    A132372(10);  # Peter Luschny, Nov 16 2023

Formula

Sum_{k, 0<=k<=n} T(n,k) = A006318(n) .
T(n,0) = A155069(n). - Philippe Deléham, Nov 03 2009

A109956 Inverse of Riordan array (1/(1-x), x/(1-x)^3), A109955.

Original entry on oeis.org

1, -1, 1, 3, -4, 1, -12, 18, -7, 1, 55, -88, 42, -10, 1, -273, 455, -245, 75, -13, 1, 1428, -2448, 1428, -510, 117, -16, 1, -7752, 13566, -8379, 3325, -910, 168, -19, 1, 43263, -76912, 49588, -21252, 6578, -1472, 228, -22, 1, -246675, 444015, -296010, 134550, -45630, 11700, -2223, 297, -25, 1
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Riordan array (g,f) where f/(1-f)^3=x and g=1-f.
First column is (-1)^n*binomial(3n,n)/(2n+1), a signed version of A001764.
Second column is a signed version of A006629.
Diagonal sums are A109957.

Examples

			Triangle begins:
      1;
     -1,   1;
      3,  -4,    1;
    -12,  18,   -7,   1;
     55, -88,   42, -10,   1;
   -273, 455, -245,  75, -13, 1;
   ...
		

Crossrefs

Programs

  • Maple
    # Function RiordanSquare defined in A321620.
    tt := sin(arcsin(3*sqrt(x*3/4))/3)/sqrt(x*3/4): R := RiordanSquare(tt, 11):
    seq(seq(LinearAlgebra:-Row(R,n)[k]*(-1)^(n+k), k=1..n), n=1..11); # Peter Luschny, Nov 27 2018
  • Mathematica
    T[n_, k_] := (-1)^(n - k)((3k + 1)/(2n + k + 1)) Binomial[3n, n - k];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
  • PARI
    tabl(nn) = {my(m = matrix(nn, nn, n, k, if (nMichel Marcus, Nov 20 2015

Formula

Number triangle T(n, k) = (-1)^(n-k)*((3k+1)/(2n+k+1))*binomial(3n, n-k).
From Werner Schulte, Oct 27 2015: (Start)
If u(m,n) = (-1)^n*(Sum_{k=0..n} T(n,k)*((m+1)*k+1)) and v(m,n) = (-1)^n*(Sum_{k=0..n} (-1)^k*T(n,k)*m^k) and D(x) is the g.f. of A001764 then P(m,x) = Sum_{n>=0} u(m,n)*x^n = 1-(m+1)*x*D(x)^2 and Q(m,x) = Sum_{n>=0} v(m,n)*x^n = 1/P(m,x).
If G(k,x) is the g.f. of column k (k>=0) then G(k,x) = G(0,x)^(3*k+1). (End)

A154380 The Riordan square of the Bell numbers. Triangle T(n, k), 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 9, 5, 1, 15, 29, 20, 7, 1, 52, 102, 77, 35, 9, 1, 203, 392, 302, 157, 54, 11, 1, 877, 1641, 1235, 683, 277, 77, 13, 1, 4140, 7451, 5324, 2987, 1329, 445, 104, 15, 1, 21147, 36525, 24329, 13391, 6230, 2340, 669, 135, 17, 1
Offset: 0

Views

Author

Paul Barry, Jan 08 2009

Keywords

Comments

The Riordan square is defined in A321620.
Previous name was: Triangle T(n,k), 0<=k<=n, read by rows given by [1, 1, 1, 2, 1, 3, 1, 4, 1, ...] DELTA [1, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
In general, the triangle [r_0, r_1, r_2, ...] DELTA [s_0, s_1, s_2, ...] has generating function
1/(1 - (r_0*x + s_0*x*y)/(1 - (r_1*x + s_1*x*y)/(1 - (r_2*x + s_2*x*y)/(1 -... (continued fraction)
A130167*A007318 as infinite lower triangular matrices. - Philippe Deléham, Jan 11 2009

Examples

			Triangle begins
     1;
     1,   1;
     2,   3,   1;
     5,   9,   5,   1;
    15,  29,  20,   7,  1;
    52, 102,  77,  35,  9,  1;
   203, 392, 302, 157, 54, 11, 1;
		

Crossrefs

First column are the Bell numbers A000110.
Row sums are A154381, alternating row sums are A000007.
Cf. A321620.

Programs

  • Maple
    # The function RiordanSquare is defined in A321620.
    RiordanSquare(add(x^k/mul(1-j*x, j=1..k), k=0..10), 10); # Peter Luschny, Dec 06 2018
  • Mathematica
    RiordanSquare[gf_, len_] := Module[{T}, T[n_, k_] := T[n, k] = If[k == 0, SeriesCoefficient[gf, {x, 0, n}], Sum[T[j, k - 1] T[n - j, 0], {j, k - 1, n - 1}]]; Table[T[n, k], {n, 0, len - 1}, {k, 0, n}]];
    RiordanSquare[Sum[x^k/Product[1 - j x, {j, 1, k}], {k, 0, 10}], 10] (* Jean-François Alcover, Jun 15 2019, from Maple *)

Formula

G.f.: 1/(1-(x+xy)/(1-x/(1-x/(1-2x/(1-x/(1-3x/(1-x/(1-4x/(1-... (continued fraction).

Extensions

New name by Peter Luschny, Dec 06 2018

A172094 The Riordan square of the little Schröder numbers A001003.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 11, 17, 7, 1, 45, 76, 40, 10, 1, 197, 353, 216, 72, 13, 1, 903, 1688, 1145, 458, 113, 16, 1, 4279, 8257, 6039, 2745, 829, 163, 19, 1, 20793, 41128, 31864, 15932, 5558, 1356, 222, 22, 1, 103049, 207905, 168584, 90776, 35318, 10070, 2066, 290, 25, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 25 2010

Keywords

Comments

The Riordan square is defined in A321620.
Previous name was: Triangle, read by rows, given by [1,2,1,2,1,2,1,2,1,2,1,2,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
Riordan array (f(x), f(x)-1) where f(x) is the g.f. of A001003. Equals A122538*A007318.

Examples

			Triangle begins:
     1
     1,      1
     3,      4,      1
    11,     17,      7,     1
    45,     76,     40,    10,     1
   197,    353,    216,    72,    13,     1
   903,   1688,   1345,   458,   113,    16,    1
  4279,   8257,   6039,  2745,   829,   163,   19,   1
20793,  41128,  31864, 15932,  5558,  1356,  222,  22,  1
103049, 207905, 168584, 90776, 35318, 10070, 2066, 290, 25, 1
.
Production matrix begins:
1, 1
2, 3, 1
0, 2, 3, 1
0, 0, 2, 3, 1
0, 0, 0, 2, 3, 1
0, 0, 0, 0, 2, 3, 1
0, 0, 0, 0, 0, 2, 3, 1
0, 0, 0, 0, 0, 0, 2, 3, 1
... - _Philippe Deléham_, Sep 24 2014
		

Crossrefs

T(n, 0) = A001003(n) (little Schröder), A109980 (row sums).
Diagonals: A239204, A000012, A016777.

Programs

  • Maple
    T := (n, k) -> local j; add((binomial(n-1, j)*binomial(n+1, k+j+1) - binomial(n, j)*binomial(n, k+j+1))*2^j, j = 0..n-k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Jan 24 2025
  • Mathematica
    DELTA[r_, s_, m_] := Module[{p, q, t, x, y}, q[k_] := x r[[k+1]] + y s[[k+1]]; p[0, ] = 1; p[, -1] = 0; p[n_ /; n >= 1, k_ /; k >= 0] := p[n, k] = p[n, k-1] + q[k] p[n-1, k+1] // Expand; t[n_, k_] := Coefficient[p[n, 0], x^(n-k)*y^k]; t[0, 0] = p[0, 0]; Table[t[n, k], {n, 0, m}, {k, 0, n}]];
    nmax = 9;
    DELTA[Table[{1, 2}, (nmax+1)/2] // Flatten, Prepend[Table[0, {nmax}], 1], nmax] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
    (* Function RiordanSquare defined in A321620. *)
    RiordanSquare[(1 + x - Sqrt[1 - 6x + x^2])/(4x), 11] // Flatten  (* Peter Luschny, Nov 27 2018 *)

Formula

T(0, 0) = 1, T(n, k) = 0 if k>n, T(n, 0) = T(n-1, 0) + 2*T(n-1, 1), T(n, k) = T(n-1, k-1) + 3*T(n-1, k) + 2*T(n-1, k+1) for k>0.
Sum_{0<=k<=n} T(n, k) = A109980(n).
Sum_{k>=0} T(m, k)*T(n, k)*2^k = T(m+n, 0) = A001003(m+n).
T(n, k) = Sum_{j=0..n-k} (binomial(n-1, j)*binomial(n+1, k+j+1) - binomial(n, j)*binomial(n, k+j+1))*2^j. (Cigler) - Peter Luschny, Jan 24 2025

Extensions

New name by Peter Luschny, Nov 27 2018

A208659 Triangle of coefficients of polynomials v(n,x) jointly generated with A185045; see the Formula section.

Original entry on oeis.org

1, 2, 2, 2, 6, 4, 2, 10, 16, 8, 2, 14, 36, 40, 16, 2, 18, 64, 112, 96, 32, 2, 22, 100, 240, 320, 224, 64, 2, 26, 144, 440, 800, 864, 512, 128, 2, 30, 196, 728, 1680, 2464, 2240, 1152, 256, 2, 34, 256, 1120, 3136, 5824, 7168, 5632, 2560, 512, 2, 38, 324
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2012

Keywords

Comments

Alternating row sums: 1, 0, 0, 0, 0, 0, 0, 0, 0, ...
For a discussion and guide to related arrays, see A208510.
As triangle T(n,k) with 0 <= k <= n, it is (2, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 04 2012

Examples

			First five rows:
  1;
  2,  2;
  2,  6,  4;
  2, 10, 16,  8;
  2, 14, 36, 40, 16;
First five polynomials v(n,x):
  1
  2 +  2x = 2*(1+x)
  2 +  6x +  4x^2 = 2*(1+x)*(1+2x)
  2 + 10x + 16x^2 +  8x^3 = 2*(1+x)*(1+2x)^2
  2 + 14x + 36x^2 + 40x^3 + 16x^4 = 2*(1+x)*(1+2x)^3
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A185045 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208659 *)
    (* Using the function RiordanSquare defined in A321620 we also have: *)
    A208659 = RiordanSquare[(1 + x)/(1 - x), 16] // Flatten (* Gerry Martens, Oct 16 2022 *)

Formula

u(n,x) = u(n-1,x) + 2x*v(n-1,x),
v(n,x) = u(n-1,x) + 2x*v(n-1,x) + 1,
where u(1,x)=1, v(1,x)=1.
As triangle T(n,k) with 0 <= k <= n: T(n,k) = A029653(n,k)*2^k. - Philippe Deléham, Mar 04 2012
Sum_{k=0..n} T(n,k)*x^k = 2*(1+x)*(1+2x)^(n-2) for n > 1. - Philippe Deléham, Mar 05 2012

A321331 Triangle read by rows: T(n, k) = (k+1)*S2(n+1, k+1), for n >= k >= 0, and S2 = A048993 (Stirling2).

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 14, 18, 4, 1, 30, 75, 40, 5, 1, 62, 270, 260, 75, 6, 1, 126, 903, 1400, 700, 126, 7, 1, 254, 2898, 6804, 5250, 1596, 196, 8, 1, 510, 9075, 31080, 34755, 15876, 3234, 288, 9, 1, 1022, 27990, 136420, 212625, 136962, 41160, 6000, 405, 10, 1, 2046, 85503, 583000, 1233650, 1076922, 447909, 95040, 10395, 550, 11
Offset: 0

Views

Author

Wolfdieter Lang, Dec 03 2018

Keywords

Comments

This lower triangular matrix T is the inverse of the triangular matrix with elements Narumi[-1](n,m)/(m+1) = S1(n+1, m+1)/(n+1), with the Narumi triangle for parameter a = -1, and S1 = A048994 (Stirling1), i.e., Sum_{k=m..n} T(n, k) * S1(k+1, m+1)/(k+1) = delta_{n,m} (Kronecker symbol).
This triangle arises from the inverse of the rational Sheffer matrix Narumi[-1] = (log(1+x)/x, log(1+x) (such special Sheffer matrices (g(x), x*g(x)) define elements of the Narumi subgroup). The inverse matrix is (Narumi[-1])^(-1) = ((exp(x) - 1)/x, exp(x) - 1).
In order to have an integer matrix one takes T(n, k) := (n+1)*(Narumi[-1])^(-1)(n, k) = (k+1)*S2(n+1, k+1). The connection to S2 = A048993 results from the general relation between each Narumi-type matrix N = (g(x), x*g(x)) and its associated Sheffer matrix J = (1, x*g(x)) (this is of the Jabotinsky-type), i.e., N(n, m) = (m+1)*J(n+1, m+1)/(n+1), or with the row polynomials Npol(n, x) = (1/(n+1))*(d/dx)Jpol(n+1, x).
The signed triangle (-1)^(n-k)*A028421(n, k) (with upper diagonals filled with zeros) gives the integer matrix Nscaled with elements (n+1)*Narumi[-1](n,k). This inverse of Nscaled has the rational elements (Narumi[-1])^(-1)(k, m)/(m+1) = (1/(k+1))*S2(k+1, m+1).
The a- and z- sequence for the Sheffer matrix (Narumi[-1])^(-1) (see A006232 for a link on these sequences) have e.g.f.s Ea(x) = x/log(1 + x) and Ez(x) = 1/log(1 + x) - 1/x, hence a(n) = A006232(n)/A006233(n) and z(n) = A006232(n+1)/A075178(n), for n >= 0. This leads to the recurrence for T(n, k) given in the formula section.
The Boas-Buck-type column recurrence (see the link, also for references) uses the sequence with o.g.f. GBB(y) = exp(y)/(exp(y) - 1) - 1/y, with BB(n) = (-1)^(n+1)*A060054(n+1 ) / A227830(n+1), for n >= 1. For the recurrence see the formula section.
The Meixner-type identity (see the Meixner link) for the row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k, derived from the one for the Narumi[-1]^(-1) row polynomials is Sum_{k=1..n} (-1)^{k+1}*(1/k)*(d/dx)^k R(n, x)/(n+1) = R(n-1, x), for n >= 1, and R(0, x) = 1. Here d/dx is a differentiation operator.
The Roman-type recurrence for the row polynomials (see the reference, Corollary 3.7.2. p. 50) becomes, with the z-sequence from above: R(n, x) = ((n+1)/n)*{(x + 1/2)*1 + (x - z(1))*d/dx - Sum_{k=2..n-1} (1/k!)*z(k)*(d/dx)^k}*R(n-1, x), for n >= 1, and R(0, x) = 1.
The triangle is the exponential Riordan square (cf. A321620) of exp(x)-1 with an additional main diagonal of zeros. - Peter Luschny, Jan 03 2019

Examples

			The triangle T(n, k) begins:
  n\k  0    1     2      3       4       5      6     7     8   9 10 ...
  ----------------------------------------------------------------------
  0:   1
  1:   1    2
  2:   1    6     3
  3:   1   14    18      4
  4:   1   30    75     40       5
  5:   1   62   270    260      75       6
  6:   1  126   903   1400     700     126      7
  7:   1  254  2898   6804    5250    1596    196     8
  8:   1  510  9075  31080   34755   15876   3234   288     9
  9:   1 1022 27990 136420  212625  136962  41160  6000   405  10
  10:  1 2046 85503 583000 1233650 1076922 447909 95040 10395 550 11
  ...
Recurrence (from Stirling2): T(4, 2) = 3*(T(3, 2) + T(3, 1)/2) = 3*(18 + 14/2) = 75.
Recurrence (from a- and z-sequence): T(4, 0) = 5*((1/2)*T(3, 0) - (1/12)*T(3, 1) + (1/12)*T(3, 2) - (19/120)*T(3, 3)) = 5*(1/2 - 14/12 + 18/12 - 4*19/120) = 1; T(4,2) = (5/2)*(1*1*T(3, 1) + 2*(1/2)*T(3, 2) + 3*(-1/6)* T(3, 3)) = (5/2)*(14 + 18 - 2) = 75.
Recurrence for column k=2 (Boas-Buck-type): T(4, 2) = (5!*3/2)*((1/3!)*(1/12)*T(2, 2) + (1/4!)*(1/2)*T(3, 2)) = (5!*3/2)*((1/72)*3 + (1/48)*18) = 75.
Meixner identity for the row polynomials, for n = 3: {d/dx  - (1/2)*(d/dx)^2 + (1/3)*(d/dx)^3)}*R(3, x)/4) = ((14 - 36/2 + 24/3) + (36 - 24/2)*x + 12*x^2)/4 = (1 + 6*x + 3*x^2) = R(2, x).
Roman type recurrence for row polynomials: R(n, 3) = (3/2)*{(x + 1/12)*(1 + 6*x + 3*x^2) + (x - (-1/2))*(6 + 6*x) - (1/2!)*(1/12)*6} = 1 + 14*x + 18*x^2 + 4*x^3.
		

References

  • Steven Roman, The umbral calculus, Academic Press, 1984.

Crossrefs

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->(k+1)*Stirling2(n+1,k+1)))); # Muniru A Asiru, Dec 03 2018
    
  • Maple
    T:=(n,k)->(k+1)*Stirling2(n+1,k+1): seq(seq(T(n,k),k=0..n),n=0..10); # Muniru A Asiru, Dec 03 2018
  • Mathematica
    T[n_, k_] := (k+1) * StirlingS2[n+1, k+1];  Table[T[n, k], {n,0,10}, {k, 0, n}] //Flatten (* Amiram Eldar, Dec 03 2018 *)
  • PARI
    T(n, k) = (k+1)*stirling(n+1, k+1, 2) \\ Thomas Scheuerle, Nov 10 2023
  • Sage
    # uses[riordan_square from A321620]
    riordan_square(exp(x) - 1, 10, True) # Peter Luschny, Jan 03 2019
    

Formula

T(n, k) = (k+1)*A048993(n+1, k+1), with A048993 = Stirling2, for n >= k >= 0, and 0 otherwise.
T(n, k) = (n+1)*(Narumi[a=-1])^(-1)(n, k), with the Narumi[a=-1] matrix with entries (-1)^(n-k)*A028421(n, k)/(n+1).
E.g.f. for column k sequence: E(k, x) = (x*d/dx + 1)*EN(k, x), where EN(k, x) = (exp(x) - 1)^(k+1)/(x*k!) is the e.g.f. for the (Narumi[a=-1])^(-1) columns. Hence E(k, x) = exp(x)*(exp(x) - 1)*(k+1)/k!, for k >= 0.
E.g.f. for (ordinary) row polynomials R(n, x): Epol(z, x) = exp(z)*exp(x*(exp(z) - 1))*(1 + x*(exp(z) - 1)).
Recurrence (from Stirling2): T(n, k) = 0 for n < k; T(n, 0) = (k + 1)*T(n-1, k), for n <= 1, T(0, 0) = 1; T(n, k) = (k+1)*(T(n-1, k) + T(n-1, k-1)/k), for n >= 1, k >= 1.
Recurrence (from a- and z-sequence, see above): a = {1, 1/2, -1/6, 1/4, -19/30, 9/4, ...}, z = {1/2, -1/12, 1/12, -19/120, 9/20, -863/504, ...}.
T(n, k) = 0, for n < k; T(n, 0) = (n+1)*Sum_{j=0..n-1} z(j)*T(n-1, j), for n >= 1, with T(0, 0) = 1; T(n, k) = ((n+1)/k)*Sum_{j=0..n-m} binomial(k-1+j, j)*a(j)*T(n-1, k-1+j).
Recurrence for column k, from the Boas-Buck-type sequence BB(n) = (-1)^(n+1)*A060054(n+1)/A227830(n+1), for n >= 0; BB = {1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, ...}: T(n, k) = 0, for n < k; T(n, n) = n+1, for n >= 0; T(n, k) = ((n+1)!*(k+1)/(n-k))*Sum_{j=k..n-1} (1/(j+1)!)*BB(n-(j+1))*T(j, k), for n >= 0 and k = 0, 1, ..., n-1.
T(n, k) = Stirling2(n+2, k+1) - Stirling2(n+1, k). - Peter Luschny, May 26 2020

A321966 Triangle read by rows, coefficients of a family of orthogonal polynomials, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 5, 1, 6, 27, 12, 1, 24, 168, 123, 22, 1, 120, 1200, 1275, 365, 35, 1, 720, 9720, 13950, 5655, 855, 51, 1, 5040, 88200, 163170, 87465, 18480, 1722, 70, 1, 40320, 887040, 2046240, 1387680, 383145, 49476, 3122, 92, 1
Offset: 0

Views

Author

Peter Luschny, Dec 20 2018

Keywords

Comments

The polynomials represent a family of orthogonal polynomials which obey a recurrence of the form p(n, x) = (x + alpha(n))*p(n-1, x) - beta(n)*p(n-2, x) + gamma(n)*p(n-3, x). For the details see the Maple program.
We conjecture that the polynomials have only negative and simple real roots.
From Giuliano Cabrele, Sep 09 2021: (Start)
Let He(n,x) define the probabilist's version of Hermite polynomials.
Then the terms of the triangle appear to be the connection coefficients in
x^n*He(n,x) = Sum_{k=0..n} T(n,k)*He(2k,x).
These are generated by the explicit formula
T(n,m) = 2^(n-m)*Sum_{j=0..floor(n/2)} C(n,2*j)*C(2*n-2*j,2*m)*Gamma(1/2 + n - m - j)/Gamma(1/2 - j).
A formal proof that they correspond to the original definition is needed. (End)

Examples

			p(0,x) = 1;
p(1,x) = x + 1;
p(2,x) = x^2 + 5*x + 2;
p(3,x) = x^3 + 12*x^2 + 27*x + 6;
p(4,x) = x^4 + 22*x^3 + 123*x^2 + 168*x + 24;
p(5,x) = x^5 + 35*x^4 + 365*x^3 + 1275*x^2 + 1200*x + 120;
p(6,x) = x^6 + 51*x^5 + 855*x^4 + 5655*x^3 + 13950*x^2 + 9720*x + 720;
		

Crossrefs

p(n, 1) = A321965(n); p(n, 0) = n! = A000142(n).
Cf. A321620.

Programs

  • Maple
    P := proc(n) option remember; local a, b, c;
    a := n -> 3*n-2; b := n -> (n-1)*(3*n-4); c := n -> (n-2)^2*(n-1);
    if n = 0 then return 1 fi;
    if n = 1 then return x + 1 fi;
    if n = 2 then return x^2 + 5*x + 2 fi;
    expand((x+a(n))*P(n-1) - b(n)*P(n-2) + c(n)*P(n-3)) end:
    seq(print(P(n)), n=0..6); # Computes the polynomials.
  • Mathematica
    a[n_] := 3n-2; b[n_] := (n-1)(3n-4); c[n_] := (n-2)^2 (n-1);
    P[n_] := P[n] = Switch[n, 0, 1, 1, x+1, 2, x^2 + 5x + 2, _, Expand[(x+a[n]) P[n-1] - b[n] P[n-2] + c[n] P[n-3]]];
    Table[CoefficientList[P[n], x], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 01 2019, from Maple *)
  • Sage
    # uses[RiordanSquare from A321620]
    R = RiordanSquare((1 - 2*x)^(-1/2), 9, True).inverse()
    for n in (0..8): print([(-1)^(n-k)*c for (k, c) in enumerate(R.row(n)[:n+1])])

Formula

Let R be the inverse of the Riordan square [see A321620] of (1 - 2*x)^(-1/2) then T(n, k) = (-1)^(n-k)*R(n, k).

A187889 Riordan matrix (1/(1-x-x^2-x^3),(x+x^2+x^3)/(1-x-x^2-x^3)).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 8, 5, 1, 7, 19, 18, 7, 1, 13, 43, 54, 32, 9, 1, 24, 94, 147, 117, 50, 11, 1, 44, 200, 375, 375, 216, 72, 13, 1, 81, 418, 913, 1100, 799, 359, 98, 15, 1, 149, 861, 2147, 3027, 2657, 1507, 554, 128, 17, 1, 274, 1753, 4914, 7937, 8174, 5610, 2603, 809, 162, 19, 1
Offset: 0

Views

Author

Emanuele Munarini, Mar 15 2011

Keywords

Examples

			Triangle begins:
1
1,1
2,3,1
4,8,5,1
7,19,18,7,1
13,43,54,32,9,1
24,94,147,117,50,11,1
44,200,375,375,216,72,13,1
81,418,913,1100,799,359,98,15,1
		

Crossrefs

Programs

  • Mathematica
    (* Function RiordanSquare defined in A321620. *)
    RiordanSquare[1/(1 - x - x^2- x^3), 11] // Flatten (* Peter Luschny, Nov 27 2018 *)
  • Maxima
    trinomial(n,k):=coeff(expand((1+x+x^2)^n),x,k);
    create_list(sum(binomial(i+k,k)*trinomial(i+k,n-k-i),i,0,n-k),n,0,8,k,0,n);

Formula

a(n,k) = Sum_{i=0..n-k} binomial(i+k,k)*trinomial(i+k,n-k-i), where trinomial(n,k) are the trinomial coefficients (A027907).
Recurrence: a(n+3,k+1) = a(n+2,k+1) + a(n+2,k) + a(n+1,k+1) + a(n+1,k) + a(n,k+1) + a(n,k)

A321623 The Riordan square of the large Schröder numbers, triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 2, 2, 6, 10, 4, 22, 46, 32, 8, 90, 214, 196, 88, 16, 394, 1018, 1104, 672, 224, 32, 1806, 4946, 6020, 4448, 2048, 544, 64, 8558, 24470, 32400, 27432, 15584, 5792, 1280, 128, 41586, 122926, 173572, 162680, 107408, 49824, 15552, 2944, 256
Offset: 0

Views

Author

Peter Luschny, Nov 22 2018

Keywords

Comments

Triangle, read by rows,given by [2,1,2,1,2,1,2,1,...]DELTA[2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 05 2020

Examples

			[0][     1]
[1][     2,      2]
[2][     6,     10,      4]
[3][    22,     46,     32,      8]
[4][    90,    214,    196,     88,     16]
[5][   394,   1018,   1104,    672,    224,     32]
[6][  1806,   4946,   6020,   4448,   2048,    544,     64]
[7][  8558,  24470,  32400,  27432,  15584,   5792,   1280,   128]
[8][ 41586, 122926, 173572, 162680, 107408,  49824,  15552,  2944,  256]
[9][206098, 625522, 929248, 942592, 697408, 379840, 149248, 40192, 6656, 512]
		

Crossrefs

T(n, 0) = A006318 (large Schröder), A321574 (row sums), A000007 (alternating row sums).

Programs

  • Maple
    # The function RiordanSquare is defined in A321620.
    LargeSchröder := x -> (1 - x - sqrt(1 - 6*x + x^2))/(2*x);
    RiordanSquare(LargeSchröder(x), 10);
  • Mathematica
    (* The function RiordanSquare is defined in A321620. *)
    LargeSchröder[x_] := (1 - x - Sqrt[1 - 6*x + x^2])/(2*x);
    RiordanSquare[LargeSchröder[x], 10] (* Jean-François Alcover, Jun 15 2019, from Maple *)
  • Sage
    # uses[riordan_square from A321620]
    riordan_square((1 - x - sqrt(1 - 6*x + x^2))/(2*x), 10)

Formula

T(n, k) = 2^k*A133367(n,k). - Philippe Deléham, Feb 05 2020
Previous Showing 11-20 of 39 results. Next