cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 172 results. Next

A325328 Heinz numbers of finite arithmetic progressions (integer partitions with equal differences).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A049988.

Examples

			Most small numbers are in the sequence. However the sequence of non-terms together with their prime indices begins:
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   50: {1,3,3}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   68: {1,1,7}
   70: {1,3,4}
For example, 60 is the Heinz number of (3,2,1,1), which has differences (-1,-1,0), which are not equal, so 60 does not belong to the sequence.
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],SameQ@@Differences[primeptn[#]]&]

A325349 Number of integer partitions of n whose augmented differences are distinct.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 5, 7, 7, 12, 10, 13, 15, 21, 21, 31, 34, 38, 45, 55, 60, 71, 80, 84, 103, 119, 134, 152, 186, 192, 228, 263, 292, 321, 377, 399, 454, 514, 565, 618, 709, 752, 840, 958, 1050, 1140, 1297, 1402, 1568, 1755, 1901, 2080, 2343, 2524, 2758, 3074
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The Heinz numbers of these partitions are given by A325366.

Examples

			The a(1) = 1 through a(11) = 10 partitions (A = 10, B = 11):
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (A)    (B)
            (21)  (22)  (41)  (33)  (43)   (44)   (54)   (55)   (65)
                  (31)        (42)  (52)   (62)   (63)   (64)   (83)
                              (51)  (61)   (71)   (72)   (73)   (92)
                                    (421)  (422)  (81)   (82)   (A1)
                                           (431)  (522)  (91)   (443)
                                           (521)  (621)  (433)  (641)
                                                         (442)  (722)
                                                         (541)  (731)
                                                         (622)  (821)
                                                         (631)
                                                         (721)
For example, (4,4,3) has augmented differences (1,2,3), which are distinct, so (4,4,3) is counted under a(11).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Differences[Append[#,1]]&]],{n,0,30}]

A384176 Number of subsets of {1..n} without all distinct lengths of maximal runs (increasing by 1).

Original entry on oeis.org

0, 0, 0, 1, 3, 8, 20, 51, 121, 276, 612, 1335, 2881, 6144, 12950, 27029, 55977, 115222, 236058, 481683, 979443
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2025

Keywords

Examples

			The subset {1,3,4,8,9} has maximal runs ((1),(3,4),(8,9)), with lengths (1,2,2), so is counted under a(10).
The a(0) = 0 through a(6) = 20 subsets:
  .  .  .  {1,3}  {1,3}  {1,3}      {1,3}
                  {1,4}  {1,4}      {1,4}
                  {2,4}  {1,5}      {1,5}
                         {2,4}      {1,6}
                         {2,5}      {2,4}
                         {3,5}      {2,5}
                         {1,3,5}    {2,6}
                         {1,2,4,5}  {3,5}
                                    {3,6}
                                    {4,6}
                                    {1,3,5}
                                    {1,3,6}
                                    {1,4,6}
                                    {2,4,6}
                                    {1,2,4,5}
                                    {1,2,4,6}
                                    {1,2,5,6}
                                    {1,3,4,6}
                                    {1,3,5,6}
                                    {2,3,5,6}
		

Crossrefs

For equal instead of distinct lengths the complement is A243815.
These subsets are ranked by the non-members of A328592.
The complement is counted by A384175.
For strict partitions instead of subsets see A384178, A384884, A384886, A384880.
For permutations instead of subsets see A384891, A384892, A010027.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],!UnsameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}]

A383512 Heinz numbers of conjugate Wilf partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85
Offset: 1

Views

Author

Gus Wiseman, May 13 2025

Keywords

Comments

First differs from A364347 in having 130 and lacking 110.
First differs from A381432 in lacking 65 and 133.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).

Examples

			The terms together with their prime indices begin:
     1: {}           17: {7}            35: {3,4}
     2: {1}          19: {8}            37: {12}
     3: {2}          20: {1,1,3}        38: {1,8}
     4: {1,1}        22: {1,5}          39: {2,6}
     5: {3}          23: {9}            40: {1,1,1,3}
     7: {4}          25: {3,3}          41: {13}
     8: {1,1,1}      26: {1,6}          43: {14}
     9: {2,2}        27: {2,2,2}        44: {1,1,5}
    10: {1,3}        28: {1,1,4}        45: {2,2,3}
    11: {5}          29: {10}           46: {1,9}
    13: {6}          31: {11}           47: {15}
    14: {1,4}        32: {1,1,1,1,1}    49: {4,4}
    15: {2,3}        33: {2,5}          50: {1,3,3}
    16: {1,1,1,1}    34: {1,7}          51: {2,7}
		

Crossrefs

Partitions of this type are counted by A098859.
The conjugate version is A130091, complement A130092.
Including differences of 0 gives A325367, counted by A325324.
The strict case is A325388, counted by A320348.
The complement is A383513, counted by A336866.
Also requiring distinct multiplicities gives A383532, counted by A383507.
These are the positions of strict rows in A383534, or squarefree numbers in A383535.
A000040 lists the primes, differences A001223.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions, complement A351293.
A325349 counts partitions with distinct augmented differences, ranks A325366.
A383530 counts partitions that are not Wilf or conjugate Wilf, ranks A383531.
A383709 counts Wilf partitions with distinct augmented differences, ranks A383712.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100], UnsameQ@@DeleteCases[Differences[Prepend[prix[#],0]],0]&]

A129654 Number of different ways to represent n as general polygonal number P(m,r) = 1/2*r*((m-2)*r-(m-4)) = n>1, for m,r>1.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2, 2, 4, 3, 2, 3, 2, 2, 4, 3, 2, 3, 3, 2, 3, 4, 2, 3, 2, 2, 3, 3, 3, 5, 2, 2, 3, 3, 2, 3, 2, 2, 5, 3, 2, 3, 3, 2, 4, 3, 2, 3, 4, 2, 3, 3, 2, 3, 2, 2, 3, 4, 3, 5, 2, 2, 3, 4, 2, 3, 2, 2, 4, 3, 2, 4, 2, 2, 5, 3, 2, 3, 3, 2, 3, 3, 2, 3, 4, 3, 3, 3, 3, 4, 2, 2, 3, 4, 2, 3, 2, 2, 5, 3
Offset: 2

Views

Author

Alexander Adamchuk, Apr 27 2007

Keywords

Comments

The indices k of the first appearance of number n in a(k) are listed in A063778(n) = {2,3,6,15,36,225,...} = Least number k>1 such that k could be represented in n different ways as general m-gonal number P(m,r) = 1/2*r*((m-2)*r-(m-4)).
From Gus Wiseman, May 03 2019: (Start)
Also the number of integer partitions of n whose augmented differences are all equal, where the augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k; for example aug(6,5,5,3,3,3) = (2,1,3,1,1,3). Equivalently, a(n) is the number of integer partitions of n whose differences are all equal to the last part minus one. The Heinz numbers of these partitions are given by A307824. For example, the a(35) = 5 partitions are:
(35)
(23,12)
(11,9,7,5,3)
(8,7,6,5,4,3,2)
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
(End)

Examples

			a(6) = 3 because 6 = P(2,6) = P(3,3) = P(6,2).
		

Crossrefs

Programs

  • Maple
    A129654 := proc(n) local resul, dvs, i, r, m ;
       dvs := numtheory[divisors](2*n) ;
       resul := 0 ;
       for i from 1 to nops(dvs) do
          r := op(i, dvs) ;
          if r > 1 then
             m := (2*n/r-4+2*r)/(r-1) ;
             if is(m, integer) then
                resul := resul+1 ;
             fi ;
          fi ;
       od ;
       RETURN(resul) ;
    end: # R. J. Mathar, May 14 2007
  • Mathematica
    a[n_] := (dvs = Divisors[2*n]; resul = 0; For[i = 1, i <= Length[dvs], i++, r = dvs[[i]]; If[r > 1, m = (2*n/r-4+2*r)/(r-1); If[IntegerQ[m], resul = resul+1 ] ] ]; resul); Table[a[n], {n, 2, 106}] (* Jean-François Alcover, Sep 13 2012, translated from R. J. Mathar's Maple program *)
    Table[Length[Intersection[Divisors[2 n - 2] + 1, Divisors[2 n]]], {n, 2, 106}] (* Jonathan Sondow, May 09 2014 *)
    atpms[n_]:=Select[Join@@Table[i*Range[k,1,-1],{k,n},{i,0,n}],Total[#+1]==n&];
    Table[Length[atpms[n]],{n,100}] (* Gus Wiseman, May 03 2019 *)
  • PARI
    a(n) = sumdiv(2*n, d, (d>1) && (2*n/d + 2*d - 4) % (d-1) == 0); \\ Daniel Suteu, Dec 22 2018

Formula

a(n) = A177025(n) + 1.
G.f.: x * Sum_{k>=1} x^k / (1 - x^(k*(k + 1)/2)) (conjecture). - Ilya Gutkovskiy, Apr 09 2020

A383513 Heinz numbers of non conjugate Wilf partitions.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 110, 114, 120, 126, 132, 133, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 198, 204, 210, 216, 220, 222, 228, 231, 234, 238, 240, 246
Offset: 1

Views

Author

Gus Wiseman, May 13 2025

Keywords

Comments

First differs from A381433 in having 65.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).

Examples

			The terms together with their prime indices begin:
    6: {1,2}
   12: {1,1,2}
   18: {1,2,2}
   21: {2,4}
   24: {1,1,1,2}
   30: {1,2,3}
   36: {1,1,2,2}
   42: {1,2,4}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   60: {1,1,2,3}
   63: {2,2,4}
   65: {3,6}
   66: {1,2,5}
   70: {1,3,4}
   72: {1,1,1,2,2}
   78: {1,2,6}
   84: {1,1,2,4}
   90: {1,2,2,3}
   96: {1,1,1,1,1,2}
		

Crossrefs

Partitions of this type are counted by A336866.
The conjugate version is A130092, complement A130091.
Including differences of 0 gives complement of A325367, counted by A325324.
The strict case is the complement of A325388, counted by A320348.
The complement is A383512, counted by A098859.
Also forbidding distinct multiplicities gives A383531, counted by A383530.
These are positions of non-strict rows in A383534, or nonsquarefree numbers in A383535.
A000040 lists the primes, differences A001223.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions, complement A351293.
A383507 counts partitions that are Wilf and conjugate Wilf, ranks A383532.
A383709 counts Wilf partitions with distinct augmented differences, ranks A383712.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!UnsameQ@@DeleteCases[Differences[Prepend[prix[#],0]],0]&]

A240027 Number of partitions of n such that the successive differences of consecutive parts are strictly increasing.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 5, 7, 9, 9, 13, 14, 16, 20, 23, 25, 32, 34, 38, 45, 51, 55, 65, 70, 77, 89, 99, 106, 122, 131, 143, 161, 177, 189, 211, 229, 248, 272, 298, 317, 349, 378, 406, 440, 479, 511, 554, 597, 640, 686, 744, 792, 850, 913, 973, 1039, 1122, 1189, 1268, 1358, 1444, 1532, 1646, 1742, 1847, 1975, 2094, 2210, 2366
Offset: 0

Views

Author

Joerg Arndt, Mar 31 2014

Keywords

Comments

Partitions (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) < p(k) - p(k-1) for all k >= 3.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). Then a(n) is the number of integer partitions of n whose differences are strictly increasing. The Heinz numbers of these partitions are given by A325456. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences are strictly increasing, which is the author's interpretation. - Gus Wiseman, May 03 2019

Examples

			There are a(15) = 25 such partitions of 15:
01:  [ 1 1 2 4 7 ]
02:  [ 1 1 2 11 ]
03:  [ 1 1 3 10 ]
04:  [ 1 1 4 9 ]
05:  [ 1 1 13 ]
06:  [ 1 2 4 8 ]
07:  [ 1 2 12 ]
08:  [ 1 3 11 ]
09:  [ 1 4 10 ]
10:  [ 1 14 ]
11:  [ 2 2 3 8 ]
12:  [ 2 2 4 7 ]
13:  [ 2 2 11 ]
14:  [ 2 3 10 ]
15:  [ 2 4 9 ]
16:  [ 2 13 ]
17:  [ 3 3 9 ]
18:  [ 3 4 8 ]
19:  [ 3 12 ]
20:  [ 4 4 7 ]
21:  [ 4 11 ]
22:  [ 5 10 ]
23:  [ 6 9 ]
24:  [ 7 8 ]
25:  [ 15 ]
		

Crossrefs

Cf. A240026 (nondecreasing differences).
Cf. A179255 (distinct parts, nondecreasing), A179254 (distinct parts, strictly increasing).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Less@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0.reverse && ary0.uniq == ary0
      }
      cnt
    end
    def A240027(n)
      (0..n).map{|i| f(i)}
    end
    p A240027(50) # Seiichi Manyama, Oct 13 2018

A320347 Number of partitions of n into distinct parts (a_1, a_2, ... , a_m) (a_1 > a_2 > ... > a_m and Sum_{k=1..m} a_k = n) such that a1 - a2, a2 - a3, ..., a_{m-1} - a_m are different.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 6, 6, 9, 11, 10, 15, 18, 19, 24, 31, 29, 40, 44, 51, 56, 72, 69, 90, 97, 114, 125, 154, 151, 192, 207, 237, 255, 304, 314, 377, 401, 457, 493, 573, 596, 698, 750, 845, 905, 1034, 1104, 1255, 1354, 1507, 1624, 1817, 1955, 2178, 2357, 2605, 2794, 3077, 3380
Offset: 1

Views

Author

Seiichi Manyama, Oct 11 2018

Keywords

Comments

In other words, a(n) is the number of strict integer partitions of n with distinct first differences. - Gus Wiseman, Mar 25 2021

Examples

			n = 9
[9]        ooooooooo
------------------------------------
[8, 1]      *******o  a_1 - a_2 = 7.
            oooooooo
------------------------------------
[7, 2]       *****oo  a_1 - a_2 = 5.
             ooooooo
------------------------------------
[6, 3]        ***ooo  a_1 - a_2 = 3.
              oooooo
------------------------------------
[6, 2, 1]         *o  a_2 - a_3 = 1.
              ****oo  a_1 - a_2 = 4.
              oooooo
------------------------------------
[5, 4]         *oooo  a_1 - a_2 = 1.
               ooooo
------------------------------------
a(9) = 6.
		

Crossrefs

The equal instead of distinct version is A049980.
The non-strict version is A325325 (ranking: A325368).
The non-strict ordered version is A325545.
The version for first quotients is A342520 (non-strict: A342514).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, Mar 27 2021 *)

A325858 Number of Golomb partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 20, 25, 36, 47, 59, 78, 99, 122, 155, 195, 232, 295, 355, 432, 522, 641, 749, 919, 1076, 1283, 1506, 1802, 2067, 2470, 2835, 3322, 3815, 4496, 5070, 5959, 6736, 7807, 8849, 10266, 11499, 13326, 14928, 17140, 19193, 22037, 24519, 28106
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

We define a Golomb partition of n to be an integer partition of n such that every pair of distinct parts has a different difference.
Also the number of integer partitions of n such that every orderless pair of (not necessarily distinct) parts has a different sum.
The strict case is A325876.

Examples

			The a(1) = 1 through a(7) = 14 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (222)     (322)
                            (2111)   (411)     (331)
                            (11111)  (2211)    (421)
                                     (3111)    (511)
                                     (21111)   (2221)
                                     (111111)  (4111)
                                               (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
The A000041(9) - a(9) = 5 non-Golomb partitions of 9 are: (531), (432), (3321), (32211), (321111).
		

Crossrefs

The subset case is A143823.
The maximal case is A325879.
The integer partition case is A325858.
The strict integer partition case is A325876.
Heinz numbers of the counterexamples are given by A325992.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Subtract@@@Subsets[Union[#],{2}]&]],{n,0,30}]

A384886 Number of strict integer partitions of n with all equal lengths of maximal runs (decreasing by 1).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 4, 7, 7, 8, 11, 11, 14, 17, 19, 20, 27, 27, 35, 38, 45, 47, 60, 63, 75, 84, 97, 104, 127, 134, 155, 175, 196, 218, 251, 272, 307, 346, 384, 424, 480, 526, 586, 658, 719, 798, 890, 979, 1078, 1201, 1315, 1451, 1603, 1762, 1934, 2137
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2025

Keywords

Examples

			The strict partition y = (7,6,5,3,2,1) has maximal runs ((7,6,5),(3,2,1)), with lengths (3,3), so y is counted under a(24).
The a(1) = 1 through a(14) = 14 partitions (A-E = 10-14):
  1  2  3   4   5   6    7   8   9    A     B    C     D    E
        21  31  32  42   43  53  54   64    65   75    76   86
                41  51   52  62  63   73    74   84    85   95
                    321  61  71  72   82    83   93    94   A4
                                 81   91    92   A2    A3   B3
                                 432  631   A1   B1    B2   C2
                                 531  4321  641  543   C1   D1
                                            731  642   742  752
                                                 741   751  842
                                                 831   841  851
                                                 5421  931  941
                                                            A31
                                                            5432
                                                            6521
		

Crossrefs

For subsets instead of strict partitions we have A243815, distinct lengths A384175.
For distinct instead of equal lengths we have A384178, for anti-runs A384880.
This is the strict case of A384904, distinct lengths A384884.
A000041 counts integer partitions, strict A000009.
A047993 counts partitions with max part = length (A106529).
A098859 counts Wilf partitions (complement A336866), compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SameQ@@Length/@Split[#,#2==#1-1&]&]],{n,0,15}]
  • PARI
    A_q(N) = {Vec(1+sum(k=1,floor(-1/2+sqrt(2+2*N)), sum(i=1,(N/(k*(k+1)/2))+1, q^(k*(k+1)*i^2/2)/prod(j=1,i, 1 - q^(j*k)))) + O('q^(N+1)))} \\ John Tyler Rascoe, Aug 21 2025

Formula

G.f.: 1 + Sum_{i,k>0} q^(k*(k+1)*i^2/2)/Product_{j=1..i} (1 - q^(j*k)). - John Tyler Rascoe, Aug 21 2025
Previous Showing 21-30 of 172 results. Next