A363740
Number of integer partitions of n whose median appears more times than any other part, i.e., partitions containing a unique mode equal to the median.
Original entry on oeis.org
1, 2, 2, 4, 5, 7, 10, 15, 18, 26, 35, 46, 61, 82, 102, 136, 174, 224, 283, 360, 449, 569, 708, 883, 1089, 1352, 1659, 2042, 2492, 3039, 3695, 4492, 5426, 6555, 7889, 9482, 11360, 13602, 16231, 19348, 23005, 27313, 32364, 38303, 45227, 53341, 62800, 73829
Offset: 1
The a(1) = 1 through a(8) = 15 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (221) (33) (322) (44)
(211) (311) (222) (331) (332)
(1111) (2111) (411) (511) (422)
(11111) (3111) (2221) (611)
(21111) (4111) (2222)
(111111) (22111) (3221)
(31111) (5111)
(211111) (22211)
(1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
A008284 counts partitions by length (or decreasing mean), strict
A008289.
-
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
Table[Length[Select[IntegerPartitions[n],{Median[#]}==modes[#]&]],{n,30}]
A238478
Number of partitions of n whose median is a part.
Original entry on oeis.org
1, 2, 2, 4, 5, 8, 11, 17, 22, 32, 43, 59, 78, 105, 136, 181, 233, 302, 386, 496, 626, 796, 999, 1255, 1564, 1951, 2412, 2988, 3674, 4516, 5524, 6753, 8211, 9984, 12086, 14617, 17617, 21211, 25450, 30514, 36475, 43550, 51869, 61707, 73230, 86821, 102706
Offset: 1
a(6) counts these partitions: 6, 411, 33, 321, 3111, 222, 21111, 111111.
These partitions have ranks
A362618.
-
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Median[p]]], {n, 40}]
A360244
Number of integer partitions of n where the parts do not have the same median as the distinct parts.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 3, 9, 11, 17, 23, 37, 42, 68, 87, 110, 153, 209, 261, 352, 444, 573, 750, 949, 1187, 1508, 1909, 2367, 2938, 3662, 4507, 5576, 6826, 8359, 10203, 12372, 15011, 18230, 21996, 26518, 31779, 38219, 45682, 54660, 65112, 77500, 92089, 109285
Offset: 0
The a(4) = 1 through a(9) = 17 partitions:
(211) (221) (411) (322) (332) (441)
(311) (3111) (331) (422) (522)
(2111) (21111) (511) (611) (711)
(2221) (4211) (3222)
(3211) (5111) (3321)
(4111) (22211) (4311)
(22111) (32111) (5211)
(31111) (41111) (6111)
(211111) (221111) (22221)
(311111) (33111)
(2111111) (42111)
(51111)
(321111)
(411111)
(2211111)
(3111111)
(21111111)
For example, the partition y = (33111) has median 1, and the distinct parts {1,3} have median 2, so y is counted under a(9).
These partitions are ranked by
A360248.
A008284 counts partitions by number of parts.
A116608 counts partitions by number of distinct parts.
A359894 counts partitions with mean different from median, ranks
A359890.
A360071 counts partitions by number of parts and number of distinct parts.
-
Table[Length[Select[IntegerPartitions[n], Median[#]!=Median[Union[#]]&]],{n,0,30}]
A360550
Numbers > 1 whose distinct prime indices have integer median.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 20, 21, 22, 23, 25, 27, 29, 30, 31, 32, 34, 37, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 53, 55, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 73, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 97, 100
Offset: 1
The prime indices of 900 are {1,1,2,2,3,3}, with distinct parts {1,2,3}, with median 2, so 900 is in the sequence.
The prime indices of 330 are {1,2,3,5}, with distinct parts {1,2,3,5}, with median 5/2, so 330 is not in the sequence.
For mean instead of median we have
A326621.
Positions of even terms in
A360457.
The complement (without 1) is
A360551.
Partitions with these Heinz numbers are counted by
A360686.
A361848
Number of integer partitions of n such that (maximum) <= 2*(median).
Original entry on oeis.org
1, 2, 3, 5, 6, 9, 12, 15, 19, 26, 31, 40, 49, 61, 75, 93, 112, 137, 165, 199, 238, 289, 341, 408, 482, 571, 674, 796, 932, 1096, 1280, 1495, 1738, 2026, 2347, 2724, 3148, 3639, 4191, 4831, 5545, 6372, 7298, 8358, 9552, 10915, 12439, 14176, 16121, 18325
Offset: 0
The a(1) = 1 through a(7) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (2111) (222) (322)
(11111) (321) (331)
(2211) (421)
(21111) (2221)
(111111) (3211)
(22111)
(211111)
(1111111)
For example, the partition y = (3,2,2) has maximum 3 and median 2, and 3 <= 2*2, so y is counted under a(7).
For length instead of median we have
A237755.
For minimum instead of median we have
A237824.
For mean instead of median we have
A361851.
A000975 counts subsets with integer median.
Cf.
A008284,
A013580,
A027193,
A061395,
A067538,
A111907,
A240219,
A324562,
A359907,
A361394,
A361860.
A363719
Number of integer partitions of n satisfying (mean) = (median) = (mode), assuming there is a unique mode.
Original entry on oeis.org
1, 2, 2, 3, 2, 4, 2, 5, 3, 5, 2, 10, 2, 7, 7, 12, 2, 18, 2, 24, 16, 13, 2, 58, 15, 18, 37, 60, 2, 123, 2, 98, 79, 35, 103, 332, 2, 49, 166, 451, 2, 515, 2, 473, 738, 92, 2, 1561, 277, 839, 631, 1234, 2, 2043, 1560, 2867, 1156, 225, 2, 9020
Offset: 1
The a(n) partitions for n = 1, 2, 4, 6, 8, 12, 14, 16 (A..G = 10..16):
1 2 4 6 8 C E G
11 22 33 44 66 77 88
1111 222 2222 444 2222222 4444
111111 3221 3333 3222221 5443
11111111 4332 3322211 6442
5331 4222211 7441
222222 11111111111111 22222222
322221 32222221
422211 33222211
111111111111 42222211
52222111
1^16
Just two statistics:
A008284 counts partitions by length (or negative mean), strict
A008289.
A362608 counts partitions with a unique mode.
-
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
Table[Length[Select[IntegerPartitions[n], {Mean[#]}=={Median[#]}==modes[#]&]],{n,30}]
A237821
Number of partitions of n such that 2*(least part) <= greatest part.
Original entry on oeis.org
0, 0, 1, 2, 4, 7, 11, 16, 25, 35, 48, 68, 92, 123, 164, 216, 282, 367, 471, 604, 769, 975, 1225, 1542, 1924, 2395, 2968, 3669, 4514, 5547, 6781, 8280, 10071, 12229, 14796, 17881, 21537, 25902, 31066, 37206, 44443, 53021, 63098, 74995, 88946, 105350, 124533
Offset: 1
a(6) = 7 counts these partitions: 51, 42, 411, 321, 3111, 2211, 21111.
From _Gus Wiseman_, May 15 2023: (Start)
The a(3) = 1 through a(8) = 16 partitions wirth 2*(least part) <= greatest part:
(21) (31) (41) (42) (52)
(211) (221) (51) (61)
(311) (321) (331)
(2111) (411) (421)
(2211) (511)
(3111) (2221)
(21111) (3211)
(4111)
(22111)
(31111)
(211111)
The a(3) = 1 through a(8) = 16 partitions with different median from maximum:
(21) (31) (32) (42) (43)
(211) (41) (51) (52)
(311) (321) (61)
(2111) (411) (322)
(2211) (421)
(3111) (511)
(21111) (3211)
(4111)
(22111)
(31111)
(211111)
(End)
These partitions have ranks
A069900.
The conjugate partitions have ranks
A362980.
-
z = 60; q[n_] := q[n] = IntegerPartitions[n];
Table[Count[q[n], p_ /; 2 Min[p] < Max[p]], {n, z}] (* A237820 *)
Table[Count[q[n], p_ /; 2 Min[p] <= Max[p]], {n, z}] (* A237821 *)
Table[Count[q[n], p_ /; 2 Min[p] = = Max[p]], {n, z}](* A118096 *)
Table[Count[q[n], p_ /; 2 Min[p] > Max[p]], {n, z}] (* A053263 *)
Table[Count[q[n], p_ /; 2 Min[p] >= Max[p]], {n, z}] (* A237824 *)
A359895
Number of odd-length integer partitions of n whose parts have the same mean as median.
Original entry on oeis.org
0, 1, 1, 2, 1, 2, 3, 2, 1, 5, 5, 2, 5, 2, 8, 18, 1, 2, 19, 2, 24, 41, 20, 2, 9, 44, 31, 94, 102, 2, 125, 2, 1, 206, 68, 365, 382, 2, 98, 433, 155, 2, 716, 2, 1162, 2332, 196, 2, 17, 1108, 563, 1665, 3287, 2, 3906, 5474, 2005, 3083, 509, 2, 9029
Offset: 0
The a(1) = 1 through a(9) = 5 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(111) (11111) (222) (1111111) (333)
(321) (432)
(531)
(111111111)
The a(15) = 18 partitions:
(15)
(5,5,5)
(6,5,4)
(7,5,3)
(8,5,2)
(9,5,1)
(3,3,3,3,3)
(4,3,3,3,2)
(4,4,3,2,2)
(4,4,3,3,1)
(5,3,3,2,2)
(5,3,3,3,1)
(5,4,3,2,1)
(5,5,3,1,1)
(6,3,3,2,1)
(6,4,3,1,1)
(7,3,3,1,1)
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
The complement is counted by
A359896.
The version for factorizations is
A359910.
-
Table[Length[Select[IntegerPartitions[n], OddQ[Length[#]]&&Mean[#]==Median[#]&]],{n,0,30}]
-
\\ P(n, k, m) is g.f. for k parts of max size m.
P(n, k, m)={polcoef(1/prod(i=1, m, 1 - y*x^i + O(x*x^n)), k, y)}
a(n)={if(n==0, 0, sumdiv(n, d, if(d%2, my(m=n/d, h=d\2, r=n-m*(h+1)+h); polcoef(P(r, h, m)*P(r, h, r), r))))} \\ Andrew Howroyd, Jan 21 2023
A360245
Number of integer partitions of n where the parts have the same median as the distinct parts.
Original entry on oeis.org
1, 1, 2, 3, 4, 4, 8, 6, 11, 13, 19, 19, 35, 33, 48, 66, 78, 88, 124, 138, 183, 219, 252, 306, 388, 450, 527, 643, 780, 903, 1097, 1266, 1523, 1784, 2107, 2511, 2966, 3407, 4019, 4667, 5559, 6364, 7492, 8601, 10063, 11634, 13469, 15469, 17985, 20558, 23812
Offset: 0
The a(1) = 1 through a(8) = 11 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (11111) (51) (61) (62)
(222) (421) (71)
(321) (1111111) (431)
(2211) (521)
(111111) (2222)
(3221)
(3311)
(11111111)
For example, the partition y = (6,4,4,4,1,1) has median 4, and the distinct parts {1,4,6} also have median 4, so y is counted under a(20).
These partitions have ranks
A360249.
A008284 counts partitions by number of parts.
A116608 counts partitions by number of distinct parts.
A359894 counts partitions with mean different from median, ranks
A359890.
A360071 counts partitions by number of parts and number of distinct parts.
-
Table[Length[Select[IntegerPartitions[n], Median[#]==Median[Union[#]]&]],{n,0,30}]
A360254
Number of integer partitions of n with more adjacent equal parts than distinct parts.
Original entry on oeis.org
0, 0, 0, 1, 1, 1, 3, 4, 7, 10, 12, 18, 28, 36, 52, 68, 92, 119, 161, 204, 269, 355, 452, 571, 738, 921, 1167, 1457, 1829, 2270, 2834, 3483, 4314, 5300, 6502, 7932, 9665, 11735, 14263, 17227, 20807, 25042, 30137, 36099, 43264, 51646, 61608, 73291, 87146, 103296
Offset: 0
The a(3) = 1 through a(9) = 10 partitions:
(111) (1111) (11111) (222) (22111) (2222) (333)
(21111) (31111) (22211) (22221)
(111111) (211111) (41111) (33111)
(1111111) (221111) (51111)
(311111) (222111)
(2111111) (411111)
(11111111) (2211111)
(3111111)
(21111111)
(111111111)
For example, the partition y = (4,4,3,1,1,1,1) has 0-appended differences (0,1,2,0,0,0,0), with median 0, so y is counted under a(15).
The non-prepended version is
A237363.
These partitions have ranks
A360558.
For any integer median (not just 0) we have
A360688.
A008284 counts partitions by number of parts.
A116608 counts partitions by number of distinct parts.
-
Table[Length[Select[IntegerPartitions[n], Length[#]>2*Length[Union[#]]&]],{n,0,30}]
Comments