A382429
Number of normal multiset partitions of weight n into sets with a common sum.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 13, 26, 57, 113, 283, 854, 2401, 6998, 24072, 85061, 308956, 1190518, 4770078, 19949106, 87059592
Offset: 0
The a(1) = 1 through a(6) = 13 partitions:
{1} {12} {123} {1234} {12345} {123456}
{1}{1} {3}{12} {12}{12} {24}{123} {123}{123}
{1}{1}{1} {14}{23} {34}{124} {125}{134}
{3}{3}{12} {3}{12}{12} {135}{234}
{1}{1}{1}{1} {5}{14}{23} {145}{235}
{3}{3}{3}{12} {12}{12}{12}
{1}{1}{1}{1}{1} {14}{14}{23}
{14}{23}{23}
{16}{25}{34}
{3}{3}{12}{12}
{5}{5}{14}{23}
{3}{3}{3}{3}{12}
{1}{1}{1}{1}{1}{1}
The corresponding factorizations:
2 6 30 210 2310 30030
2*2 5*6 6*6 21*30 30*30
2*2*2 14*15 35*42 6*6*6
5*5*6 5*6*6 66*70
2*2*2*2 5*5*5*6 110*105
11*14*15 154*165
2*2*2*2*2 5*5*6*6
14*14*15
14*15*15
26*33*35
5*5*5*5*6
11*11*14*15
2*2*2*2*2*2
Without the common sum we have
A116540 (normal set multipartitions).
Twice-partitions of this type are counted by
A279788.
For common sizes instead of sums we have
A317583.
For a common length instead of sum we have
A331638.
For distinct instead of equal block-sums we have
A381718.
Factorizations of this type are counted by
A382080.
For distinct block-sums and constant blocks we have
A382203.
For constant instead of strict blocks we have
A382204.
A321469 counts multiset partitions with distinct block-sums, ranks
A326535.
-
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Join@@(Select[mps[#],SameQ@@Total/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]
A326536
MM-numbers of multiset partitions where every part has the same average.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 57, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 131, 133, 137, 139, 145, 147, 149, 151, 157, 159, 163, 167
Offset: 1
The sequence of multiset partitions where every part has the same average, preceded by their MM-numbers, begins:
1: {}
2: {{}}
3: {{1}}
4: {{},{}}
5: {{2}}
7: {{1,1}}
8: {{},{},{}}
9: {{1},{1}}
11: {{3}}
13: {{1,2}}
16: {{},{},{},{}}
17: {{4}}
19: {{1,1,1}}
21: {{1},{1,1}}
23: {{2,2}}
25: {{2},{2}}
27: {{1},{1},{1}}
29: {{1,3}}
31: {{5}}
32: {{},{},{},{},{}}
Cf.
A038041,
A051293,
A112798,
A302242,
A320324,
A326512,
A326515,
A326520,
A326533,
A326534,
A326535,
A326537.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],SameQ@@Mean/@primeMS/@primeMS[#]&]
A382203
Number of normal multiset partitions of weight n into constant multisets with distinct sums.
Original entry on oeis.org
1, 1, 2, 4, 9, 19, 37, 76, 159, 326, 671, 1376, 2815, 5759, 11774, 24083, 49249, 100632, 205490, 419420, 855799, 1745889, 3561867, 7268240, 14836127, 30295633, 61888616
Offset: 0
The a(1) = 1 through a(4) = 9 multiset partitions:
{{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}}
{{1},{2}} {{1},{1,1}} {{1},{1,1,1}}
{{1},{2,2}} {{1,1},{2,2}}
{{1},{2},{3}} {{1},{2,2,2}}
{{2},{1,1,1}}
{{1},{2},{2,2}}
{{1},{2},{3,3}}
{{1},{3},{2,2}}
{{1},{2},{3},{4}}
The a(5) = 19 factorizations:
32 2*16 2*3*27 2*3*5*25 2*3*5*7*11
4*8 2*4*9 2*3*5*9
2*81 2*3*8 2*3*5*49
4*27 2*3*125 2*3*7*25
9*8 2*9*25
3*16 2*5*27
5*4*9
Without distinct sums we have
A055887.
Twice-partitions of this type are counted by
A279786.
For distinct blocks instead of sums we have
A304969.
Without constant blocks we have
A326519.
Factorizations of this type are counted by
A381635.
For strict instead of constant blocks we have
A381718.
For equal instead of distinct block-sums we have
A382204.
For equal block-sums and strict blocks we have
A382429.
A089259 counts set multipartitions of integer partitions.
A321469 counts multiset partitions with distinct block-sums, ranks
A326535.
Cf.
A007716,
A116539,
A255903,
A275780,
A317583,
A326517,
A326518,
A381633,
A381636,
A382216,
A382428.
-
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Join@@(Select[mps[#],UnsameQ@@Total/@#&&And@@SameQ@@@#&]&/@allnorm[n])],{n,0,5}]
A381991
Numbers whose prime indices have a unique multiset partition into constant multisets with distinct sums.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79
Offset: 1
The prime indices of 270 are {1,2,2,2,3}, and there are two multiset partitions into constant multisets with distinct sums: {{1},{2},{3},{2,2}} and {{1},{3},{2,2,2}}, so 270 is not in the sequence.
The prime indices of 300 are {1,1,2,3,3}, of which there are no multiset partitions into constant multisets with distinct sums, so 300 is not in the sequence.
The prime indices of 360 are {1,1,1,2,2,3}, of which there is only one multiset partition into constant multisets with distinct sums: {{1},{1,1},{3},{2,2}}, so 360 is in the sequence.
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
6: {1,2}
7: {4}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
18: {1,2,2}
19: {8}
20: {1,1,3}
21: {2,4}
22: {1,5}
23: {9}
24: {1,1,1,2}
25: {3,3}
For distinct blocks instead of block-sums we have
A004709, counted by
A000726.
Twice-partitions of this type are counted by
A279786.
These are the positions of 1 in
A381635.
For strict instead of constant blocks we have
A381870, counted by
A382079.
Partitions of this type (unique into constant with distinct) are counted by
A382301.
Normal multiset partitions of this type are counted by
A382203.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
Select[Range[100],Length[Select[pfacs[#],UnsameQ@@hwt/@#&]]==1&]
A326572
Number of covering antichains of subsets of {1..n}, all having different sums.
Original entry on oeis.org
2, 1, 2, 8, 80, 3015, 803898
Offset: 0
The a(0) = 2 through a(3) = 8 antichains:
{} {{1}} {{1,2}} {{1,2,3}}
{{}} {{1},{2}} {{1},{2,3}}
{{2},{1,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1},{2},{3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
The a(4) = 80 antichains:
{1234} {1}{234} {1}{2}{34} {1}{2}{3}{4} {12}{13}{14}{24}{34}
{12}{34} {1}{3}{24} {1}{23}{24}{34} {12}{13}{23}{24}{34}
{13}{24} {1}{4}{23} {2}{13}{14}{34}
{2}{134} {2}{3}{14} {12}{13}{14}{24}
{3}{124} {1}{23}{24} {12}{13}{14}{34}
{4}{123} {1}{23}{34} {12}{13}{23}{24}
{12}{134} {1}{24}{34} {12}{13}{23}{34}
{12}{234} {2}{13}{14} {12}{13}{24}{34}
{13}{124} {2}{13}{34} {12}{14}{24}{34}
{13}{234} {2}{14}{34} {12}{23}{24}{34}
{14}{123} {3}{14}{24} {13}{14}{24}{34}
{14}{234} {4}{12}{23} {13}{23}{24}{34}
{23}{124} {12}{13}{14} {12}{13}{14}{234}
{23}{134} {12}{13}{24} {12}{23}{24}{134}
{24}{134} {12}{13}{34} {123}{124}{134}{234}
{34}{123} {12}{14}{34}
{123}{124} {12}{23}{24}
{123}{134} {12}{23}{34}
{123}{234} {12}{24}{34}
{124}{134} {13}{14}{24}
{124}{234} {13}{23}{24}
{134}{234} {13}{23}{34}
{13}{24}{34}
{14}{24}{34}
{12}{13}{234}
{12}{14}{234}
{12}{23}{134}
{12}{24}{134}
{13}{14}{234}
{13}{23}{124}
{14}{34}{123}
{23}{24}{134}
{12}{134}{234}
{13}{124}{234}
{14}{123}{234}
{23}{124}{134}
{123}{124}{134}
{123}{124}{234}
{123}{134}{234}
{124}{134}{234}
Set partitions with different block-sums are
A275780.
MM-numbers of multiset partitions with different part-sums are
A326535.
Antichain covers with equal edge-sums are
A326566.
Antichain covers with different edge-sizes are
A326570.
The case without singletons is
A326571.
Antichains with equal edge-sums are
A326574.
-
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
cleq[n_]:=Select[stableSets[Subsets[Range[n]],SubsetQ[#1,#2]||Total[#1]==Total[#2]&],Union@@#==Range[n]&];
Table[Length[cleq[n]],{n,0,5}]
A326571
Number of covering antichains of nonempty, non-singleton subsets of {1..n}, all having different sums.
Original entry on oeis.org
1, 0, 1, 5, 61, 2721, 788221
Offset: 0
The a(3) = 5 antichains:
{{1,2,3}}
{{1,3},{2,3}}
{{1,2},{2,3}}
{{1,2},{1,3}}
{{1,2},{1,3},{2,3}}
The a(4) = 61 antichains:
{1234} {12}{34} {12}{13}{14} {12}{13}{14}{24} {12}{13}{14}{24}{34}
{13}{24} {12}{13}{24} {12}{13}{14}{34} {12}{13}{23}{24}{34}
{12}{134} {12}{13}{34} {12}{13}{23}{24}
{12}{234} {12}{14}{34} {12}{13}{23}{34}
{13}{124} {12}{23}{24} {12}{13}{24}{34}
{13}{234} {12}{23}{34} {12}{14}{24}{34}
{14}{123} {12}{24}{34} {12}{23}{24}{34}
{14}{234} {13}{14}{24} {13}{14}{24}{34}
{23}{124} {13}{23}{24} {13}{23}{24}{34}
{23}{134} {13}{23}{34} {12}{13}{14}{234}
{24}{134} {13}{24}{34} {12}{23}{24}{134}
{34}{123} {14}{24}{34} {123}{124}{134}{234}
{123}{124} {12}{13}{234}
{123}{134} {12}{14}{234}
{123}{234} {12}{23}{134}
{124}{134} {12}{24}{134}
{124}{234} {13}{14}{234}
{134}{234} {13}{23}{124}
{14}{34}{123}
{23}{24}{134}
{12}{134}{234}
{13}{124}{234}
{14}{123}{234}
{23}{124}{134}
{123}{124}{134}
{123}{124}{234}
{123}{134}{234}
{124}{134}{234}
Set partitions with different block-sums are
A275780.
MM-numbers of multiset partitions with different part-sums are
A326535.
Antichain covers with equal edge-sums and no singletons are
A326565.
Antichain covers with different edge-sizes and no singletons are
A326569.
The case with singletons allowed is
A326572.
Antichains with equal edge-sums are
A326574.
-
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
cleq[n_]:=Select[stableSets[Subsets[Range[n],{2,n}],SubsetQ[#1,#2]||Total[#1]==Total[#2]&],Union@@#==Range[n]&];
Table[Length[cleq[n]],{n,0,5}]
A326573
Number of connected antichains of subsets of {1..n}, all having different sums.
Original entry on oeis.org
1, 1, 1, 5, 59, 2689, 787382
Offset: 0
The a(3) = 5 antichains:
{{1,2,3}}
{{1,3},{2,3}}
{{1,2},{2,3}}
{{1,2},{1,3}}
{{1,2},{1,3},{2,3}}
The a(4) = 59 antichains:
{1234} {12}{134} {12}{13}{14} {12}{13}{14}{24} {12}{13}{14}{24}{34}
{12}{234} {12}{13}{24} {12}{13}{14}{34} {12}{13}{23}{24}{34}
{13}{124} {12}{13}{34} {12}{13}{23}{24}
{13}{234} {12}{14}{34} {12}{13}{23}{34}
{14}{123} {12}{23}{24} {12}{13}{24}{34}
{14}{234} {12}{23}{34} {12}{14}{24}{34}
{23}{124} {12}{24}{34} {12}{23}{24}{34}
{23}{134} {13}{14}{24} {13}{14}{24}{34}
{24}{134} {13}{23}{24} {13}{23}{24}{34}
{34}{123} {13}{23}{34} {12}{13}{14}{234}
{123}{124} {13}{24}{34} {12}{23}{24}{134}
{123}{134} {14}{24}{34} {123}{124}{134}{234}
{123}{234} {12}{13}{234}
{124}{134} {12}{14}{234}
{124}{234} {12}{23}{134}
{134}{234} {12}{24}{134}
{13}{14}{234}
{13}{23}{124}
{14}{34}{123}
{23}{24}{134}
{12}{134}{234}
{13}{124}{234}
{14}{123}{234}
{23}{124}{134}
{123}{124}{134}
{123}{124}{234}
{123}{134}{234}
{124}{134}{234}
Set partitions with different block-sums are
A275780.
MM-numbers of multiset partitions with different part-sums are
A326535.
Antichain covers with equal edge-sums are
A326566.
A326030
Number of antichains of subsets of {1..n} with different edge-sums.
Original entry on oeis.org
2, 3, 6, 19, 132, 3578, 826949
Offset: 0
The a(0) = 2 through a(3) = 19 antichains:
{} {} {} {}
{{}} {{}} {{}} {{}}
{{1}} {{1}} {{1}}
{{2}} {{2}}
{{1,2}} {{3}}
{{1},{2}} {{1,2}}
{{1,3}}
{{2,3}}
{{1},{2}}
{{1,2,3}}
{{1},{3}}
{{2},{3}}
{{1},{2,3}}
{{2},{1,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1},{2},{3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
Set partitions with different block-sums are
A275780.
MM-numbers of multiset partitions with different part-sums are
A326535.
Antichains with equal edge-sums are
A326574.
-
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
cleqset[set_]:=stableSets[Subsets[set],SubsetQ[#1,#2]||Total[#1]==Total[#2]&];
Table[Length[cleqset[Range[n]]],{n,0,5}]
A358832
Number of twice-partitions of n into partitions of distinct lengths and distinct sums.
Original entry on oeis.org
1, 1, 2, 4, 7, 15, 25, 49, 79, 154, 248, 453, 748, 1305, 2125, 3702, 5931, 9990, 16415, 26844, 43246, 70947, 113653, 182314, 292897, 464614, 739640, 1169981, 1844511, 2888427, 4562850, 7079798, 11064182, 17158151, 26676385, 41075556, 63598025, 97420873, 150043132
Offset: 0
The a(1) = 1 through a(5) = 15 twice-partitions:
(1) (2) (3) (4) (5)
(11) (21) (22) (32)
(111) (31) (41)
(11)(1) (211) (221)
(1111) (311)
(21)(1) (2111)
(111)(1) (11111)
(21)(2)
(22)(1)
(3)(11)
(31)(1)
(111)(2)
(211)(1)
(111)(11)
(1111)(1)
This is the case of
A271619 with distinct lengths.
This is the case of
A358830 with distinct sums.
For constant instead of distinct lengths and sums we have
A358833.
-
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
Table[Length[Select[twiptn[n],UnsameQ@@Total/@#&&UnsameQ@@Length/@#&]],{n,0,10}]
-
seq(n)={ local(Cache=Map());
my(g=Vec(-1+1/prod(k=1, n, 1 - y*x^k + O(x*x^n))));
my(F(m,r,b) = my(key=[m,r,b], z); if(!mapisdefined(Cache,key,&z),
z = if(r<=0||m==0, r==0, self()(m-1, r, b) + sum(k=1, m, my(c=polcoef(g[m],k)); if(!bittest(b,k)&&c, c*self()(min(m-1,r-m), r-m, bitor(b, 1<Andrew Howroyd, Dec 31 2022
A382301
Number of integer partitions of n having a unique multiset partition into constant blocks with distinct sums.
Original entry on oeis.org
1, 1, 2, 2, 3, 6, 8, 9, 14, 16, 25, 30, 41, 52, 69, 83, 105, 129, 164, 208, 263, 315, 388, 449, 573, 694
Offset: 0
The a(4) = 3 through a(8) = 14 partitions and their unique multiset partition into constant blocks with distinct sums:
{4} {5} {6} {7} {8}
{22} {1}{4} {33} {1}{6} {44}
{1}{3} {2}{3} {1}{5} {2}{5} {1}{7}
{11}{3} {2}{4} {3}{4} {2}{6}
{1}{22} {11}{4} {11}{5} {3}{5}
{2}{111} {11}{22} {1}{33} {11}{6}
{1}{2}{3} {3}{22} {2}{33}
{1}{11}{3} {1}{2}{4} {11}{33}
{3}{1111} {11}{222}
{1}{2}{5}
{1}{3}{4}
{1}{3}{22}
{1}{4}{111}
{1}{111}{22}
For distinct blocks instead of block-sums we have
A000726, ranks
A004709.
Twice-partitions of this type (constant with distinct) are counted by
A279786.
The Heinz numbers of these partitions are
A381991, positions of 1 in
A381635.
Normal multiset partitions of this type are counted by
A382203.
For at least one choice we have
A382427.
A050361 counts factorizations into distinct prime powers.
Cf.
A006171,
A047966,
A279784,
A293511,
A295935,
A353864,
A381633,
A381716,
A381990,
A381992,
A381993,
A382079.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
Table[Length[Select[IntegerPartitions[n],Length[Select[pfacs[Times@@Prime/@#],UnsameQ@@hwt/@#&]]==1&]],{n,0,10}]
Comments