cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A382429 Number of normal multiset partitions of weight n into sets with a common sum.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 13, 26, 57, 113, 283, 854, 2401, 6998, 24072, 85061, 308956, 1190518, 4770078, 19949106, 87059592
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(6) = 13 partitions:
  {1} {12}   {123}     {1234}       {12345}         {123456}
      {1}{1} {3}{12}   {12}{12}     {24}{123}       {123}{123}
             {1}{1}{1} {14}{23}     {34}{124}       {125}{134}
                       {3}{3}{12}   {3}{12}{12}     {135}{234}
                       {1}{1}{1}{1} {5}{14}{23}     {145}{235}
                                    {3}{3}{3}{12}   {12}{12}{12}
                                    {1}{1}{1}{1}{1} {14}{14}{23}
                                                    {14}{23}{23}
                                                    {16}{25}{34}
                                                    {3}{3}{12}{12}
                                                    {5}{5}{14}{23}
                                                    {3}{3}{3}{3}{12}
                                                    {1}{1}{1}{1}{1}{1}
The corresponding factorizations:
  2  6    30     210      2310       30030
     2*2  5*6    6*6      21*30      30*30
          2*2*2  14*15    35*42      6*6*6
                 5*5*6    5*6*6      66*70
                 2*2*2*2  5*5*5*6    110*105
                          11*14*15   154*165
                          2*2*2*2*2  5*5*6*6
                                     14*14*15
                                     14*15*15
                                     26*33*35
                                     5*5*5*5*6
                                     11*11*14*15
                                     2*2*2*2*2*2
		

Crossrefs

Without the common sum we have A116540 (normal set multipartitions).
Twice-partitions of this type are counted by A279788.
For common sizes instead of sums we have A317583.
Without strict blocks we have A326518, non-strict blocks A326517.
For a common length instead of sum we have A331638.
For distinct instead of equal block-sums we have A381718.
Factorizations of this type are counted by A382080.
For distinct block-sums and constant blocks we have A382203.
For constant instead of strict blocks we have A382204.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count multiset partitions of prime indices, strict A045778.
A321469 counts multiset partitions with distinct block-sums, ranks A326535.
Normal multiset partitions: A035310, A255906, A304969, A317532.
Set multipartitions: A089259, A116539, A270995, A296119, A318360.
Set multipartitions with distinct sums: A279785, A381806, A381870.
Constant blocks with distinct sums: A381635, A381636, A381716.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],SameQ@@Total/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]

Extensions

a(11) from Robert Price, Mar 30 2025
a(12)-a(20) from Christian Sievers, Apr 06 2025

A326536 MM-numbers of multiset partitions where every part has the same average.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 57, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 131, 133, 137, 139, 145, 147, 149, 151, 157, 159, 163, 167
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

First differs from A322902 in having 145.
These are numbers where each prime index has the same average of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of multiset partitions where every part has the same average, preceded by their MM-numbers, begins:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  11: {{3}}
  13: {{1,2}}
  16: {{},{},{},{}}
  17: {{4}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  29: {{1,3}}
  31: {{5}}
  32: {{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Mean/@primeMS/@primeMS[#]&]

A382203 Number of normal multiset partitions of weight n into constant multisets with distinct sums.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 37, 76, 159, 326, 671, 1376, 2815, 5759, 11774, 24083, 49249, 100632, 205490, 419420, 855799, 1745889, 3561867, 7268240, 14836127, 30295633, 61888616
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(4) = 9 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}
         {{1},{2}}  {{1},{1,1}}    {{1},{1,1,1}}
                    {{1},{2,2}}    {{1,1},{2,2}}
                    {{1},{2},{3}}  {{1},{2,2,2}}
                                   {{2},{1,1,1}}
                                   {{1},{2},{2,2}}
                                   {{1},{2},{3,3}}
                                   {{1},{3},{2,2}}
                                   {{1},{2},{3},{4}}
The a(5) = 19 factorizations:
  32  2*16  2*3*27   2*3*5*25  2*3*5*7*11
      4*8   2*4*9    2*3*5*9
      2*81  2*3*8    2*3*5*49
      4*27  2*3*125  2*3*7*25
      9*8   2*9*25
      3*16  2*5*27
            5*4*9
		

Crossrefs

Without distinct sums we have A055887.
Twice-partitions of this type are counted by A279786.
For distinct blocks instead of sums we have A304969.
Without constant blocks we have A326519.
Factorizations of this type are counted by A381635.
For strict instead of constant blocks we have A381718.
For equal instead of distinct block-sums we have A382204.
For equal block-sums and strict blocks we have A382429.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count multiset partitions of prime indices, strict A045778.
A089259 counts set multipartitions of integer partitions.
A321469 counts multiset partitions with distinct block-sums, ranks A326535.
Normal multiset partitions: A035310, A116540, A255906, A317532.
Set multipartitions with distinct sums: A279785, A381806, A381870.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],UnsameQ@@Total/@#&&And@@SameQ@@@#&]&/@allnorm[n])],{n,0,5}]

Extensions

a(14)-a(26) from Christian Sievers, Apr 04 2025

A381991 Numbers whose prime indices have a unique multiset partition into constant multisets with distinct sums.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79
Offset: 1

Views

Author

Gus Wiseman, Mar 22 2025

Keywords

Comments

Also numbers with a unique factorization into prime powers with distinct sums of prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 270 are {1,2,2,2,3}, and there are two multiset partitions into constant multisets with distinct sums: {{1},{2},{3},{2,2}} and {{1},{3},{2,2,2}}, so 270 is not in the sequence.
The prime indices of 300 are {1,1,2,3,3}, of which there are no multiset partitions into constant multisets with distinct sums, so 300 is not in the sequence.
The prime indices of 360 are {1,1,1,2,2,3}, of which there is only one multiset partition into constant multisets with distinct sums: {{1},{1,1},{3},{2,2}}, so 360 is in the sequence.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    6: {1,2}
    7: {4}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   17: {7}
   18: {1,2,2}
   19: {8}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   23: {9}
   24: {1,1,1,2}
   25: {3,3}
		

Crossrefs

For distinct blocks instead of block-sums we have A004709, counted by A000726.
Twice-partitions of this type are counted by A279786.
MM-numbers of these multiset partitions are A326535 /\ A355743.
These are the positions of 1 in A381635.
For no choices we have A381636 (zeros of A381635), counted by A381717.
For strict instead of constant blocks we have A381870, counted by A382079.
Partitions of this type (unique into constant with distinct) are counted by A382301.
Normal multiset partitions of this type are counted by A382203.
A001055 counts multiset partitions, see A317141 (upper), A300383 (lower), A265947.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
    Select[Range[100],Length[Select[pfacs[#],UnsameQ@@hwt/@#&]]==1&]

A326572 Number of covering antichains of subsets of {1..n}, all having different sums.

Original entry on oeis.org

2, 1, 2, 8, 80, 3015, 803898
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(0) = 2 through a(3) = 8 antichains:
  {}    {{1}}  {{1,2}}    {{1,2,3}}
  {{}}         {{1},{2}}  {{1},{2,3}}
                          {{2},{1,3}}
                          {{1,2},{1,3}}
                          {{1,2},{2,3}}
                          {{1},{2},{3}}
                          {{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
The a(4) = 80 antichains:
  {1234}  {1}{234}    {1}{2}{34}     {1}{2}{3}{4}       {12}{13}{14}{24}{34}
          {12}{34}    {1}{3}{24}     {1}{23}{24}{34}    {12}{13}{23}{24}{34}
          {13}{24}    {1}{4}{23}     {2}{13}{14}{34}
          {2}{134}    {2}{3}{14}     {12}{13}{14}{24}
          {3}{124}    {1}{23}{24}    {12}{13}{14}{34}
          {4}{123}    {1}{23}{34}    {12}{13}{23}{24}
          {12}{134}   {1}{24}{34}    {12}{13}{23}{34}
          {12}{234}   {2}{13}{14}    {12}{13}{24}{34}
          {13}{124}   {2}{13}{34}    {12}{14}{24}{34}
          {13}{234}   {2}{14}{34}    {12}{23}{24}{34}
          {14}{123}   {3}{14}{24}    {13}{14}{24}{34}
          {14}{234}   {4}{12}{23}    {13}{23}{24}{34}
          {23}{124}   {12}{13}{14}   {12}{13}{14}{234}
          {23}{134}   {12}{13}{24}   {12}{23}{24}{134}
          {24}{134}   {12}{13}{34}   {123}{124}{134}{234}
          {34}{123}   {12}{14}{34}
          {123}{124}  {12}{23}{24}
          {123}{134}  {12}{23}{34}
          {123}{234}  {12}{24}{34}
          {124}{134}  {13}{14}{24}
          {124}{234}  {13}{23}{24}
          {134}{234}  {13}{23}{34}
                      {13}{24}{34}
                      {14}{24}{34}
                      {12}{13}{234}
                      {12}{14}{234}
                      {12}{23}{134}
                      {12}{24}{134}
                      {13}{14}{234}
                      {13}{23}{124}
                      {14}{34}{123}
                      {23}{24}{134}
                      {12}{134}{234}
                      {13}{124}{234}
                      {14}{123}{234}
                      {23}{124}{134}
                      {123}{124}{134}
                      {123}{124}{234}
                      {123}{134}{234}
                      {124}{134}{234}
		

Crossrefs

Antichain covers are A006126.
Set partitions with different block-sums are A275780.
MM-numbers of multiset partitions with different part-sums are A326535.
Antichain covers with equal edge-sums are A326566.
Antichain covers with different edge-sizes are A326570.
The case without singletons is A326571.
Antichains with equal edge-sums are A326574.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n]],SubsetQ[#1,#2]||Total[#1]==Total[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,5}]

A326571 Number of covering antichains of nonempty, non-singleton subsets of {1..n}, all having different sums.

Original entry on oeis.org

1, 0, 1, 5, 61, 2721, 788221
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(3) = 5 antichains:
  {{1,2,3}}
  {{1,3},{2,3}}
  {{1,2},{2,3}}
  {{1,2},{1,3}}
  {{1,2},{1,3},{2,3}}
The a(4) = 61 antichains:
  {1234}  {12}{34}    {12}{13}{14}   {12}{13}{14}{24}   {12}{13}{14}{24}{34}
          {13}{24}    {12}{13}{24}   {12}{13}{14}{34}   {12}{13}{23}{24}{34}
          {12}{134}   {12}{13}{34}   {12}{13}{23}{24}
          {12}{234}   {12}{14}{34}   {12}{13}{23}{34}
          {13}{124}   {12}{23}{24}   {12}{13}{24}{34}
          {13}{234}   {12}{23}{34}   {12}{14}{24}{34}
          {14}{123}   {12}{24}{34}   {12}{23}{24}{34}
          {14}{234}   {13}{14}{24}   {13}{14}{24}{34}
          {23}{124}   {13}{23}{24}   {13}{23}{24}{34}
          {23}{134}   {13}{23}{34}   {12}{13}{14}{234}
          {24}{134}   {13}{24}{34}   {12}{23}{24}{134}
          {34}{123}   {14}{24}{34}   {123}{124}{134}{234}
          {123}{124}  {12}{13}{234}
          {123}{134}  {12}{14}{234}
          {123}{234}  {12}{23}{134}
          {124}{134}  {12}{24}{134}
          {124}{234}  {13}{14}{234}
          {134}{234}  {13}{23}{124}
                      {14}{34}{123}
                      {23}{24}{134}
                      {12}{134}{234}
                      {13}{124}{234}
                      {14}{123}{234}
                      {23}{124}{134}
                      {123}{124}{134}
                      {123}{124}{234}
                      {123}{134}{234}
                      {124}{134}{234}
		

Crossrefs

Antichain covers are A006126.
Set partitions with different block-sums are A275780.
MM-numbers of multiset partitions with different part-sums are A326535.
Antichain covers with equal edge-sums and no singletons are A326565.
Antichain covers with different edge-sizes and no singletons are A326569.
The case with singletons allowed is A326572.
Antichains with equal edge-sums are A326574.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n],{2,n}],SubsetQ[#1,#2]||Total[#1]==Total[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,5}]

A326573 Number of connected antichains of subsets of {1..n}, all having different sums.

Original entry on oeis.org

1, 1, 1, 5, 59, 2689, 787382
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(3) = 5 antichains:
  {{1,2,3}}
  {{1,3},{2,3}}
  {{1,2},{2,3}}
  {{1,2},{1,3}}
  {{1,2},{1,3},{2,3}}
The a(4) = 59 antichains:
  {1234}  {12}{134}   {12}{13}{14}   {12}{13}{14}{24}   {12}{13}{14}{24}{34}
          {12}{234}   {12}{13}{24}   {12}{13}{14}{34}   {12}{13}{23}{24}{34}
          {13}{124}   {12}{13}{34}   {12}{13}{23}{24}
          {13}{234}   {12}{14}{34}   {12}{13}{23}{34}
          {14}{123}   {12}{23}{24}   {12}{13}{24}{34}
          {14}{234}   {12}{23}{34}   {12}{14}{24}{34}
          {23}{124}   {12}{24}{34}   {12}{23}{24}{34}
          {23}{134}   {13}{14}{24}   {13}{14}{24}{34}
          {24}{134}   {13}{23}{24}   {13}{23}{24}{34}
          {34}{123}   {13}{23}{34}   {12}{13}{14}{234}
          {123}{124}  {13}{24}{34}   {12}{23}{24}{134}
          {123}{134}  {14}{24}{34}   {123}{124}{134}{234}
          {123}{234}  {12}{13}{234}
          {124}{134}  {12}{14}{234}
          {124}{234}  {12}{23}{134}
          {134}{234}  {12}{24}{134}
                      {13}{14}{234}
                      {13}{23}{124}
                      {14}{34}{123}
                      {23}{24}{134}
                      {12}{134}{234}
                      {13}{124}{234}
                      {14}{123}{234}
                      {23}{124}{134}
                      {123}{124}{134}
                      {123}{124}{234}
                      {123}{134}{234}
                      {124}{134}{234}
		

Crossrefs

Antichain covers are A006126.
Connected antichains are A048143.
Set partitions with different block-sums are A275780.
MM-numbers of multiset partitions with different part-sums are A326535.
Antichain covers with equal edge-sums are A326566.
The non-connected case is A326572.

A326030 Number of antichains of subsets of {1..n} with different edge-sums.

Original entry on oeis.org

2, 3, 6, 19, 132, 3578, 826949
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(0) = 2 through a(3) = 19 antichains:
  {}    {}     {}         {}
  {{}}  {{}}   {{}}       {{}}
        {{1}}  {{1}}      {{1}}
               {{2}}      {{2}}
               {{1,2}}    {{3}}
               {{1},{2}}  {{1,2}}
                          {{1,3}}
                          {{2,3}}
                          {{1},{2}}
                          {{1,2,3}}
                          {{1},{3}}
                          {{2},{3}}
                          {{1},{2,3}}
                          {{2},{1,3}}
                          {{1,2},{1,3}}
                          {{1,2},{2,3}}
                          {{1},{2},{3}}
                          {{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
		

Crossrefs

Set partitions with different block-sums are A275780.
MM-numbers of multiset partitions with different part-sums are A326535.
The covering case is A326572.
Antichains with equal edge-sums are A326574.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleqset[set_]:=stableSets[Subsets[set],SubsetQ[#1,#2]||Total[#1]==Total[#2]&];
    Table[Length[cleqset[Range[n]]],{n,0,5}]

A358832 Number of twice-partitions of n into partitions of distinct lengths and distinct sums.

Original entry on oeis.org

1, 1, 2, 4, 7, 15, 25, 49, 79, 154, 248, 453, 748, 1305, 2125, 3702, 5931, 9990, 16415, 26844, 43246, 70947, 113653, 182314, 292897, 464614, 739640, 1169981, 1844511, 2888427, 4562850, 7079798, 11064182, 17158151, 26676385, 41075556, 63598025, 97420873, 150043132
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(5) = 15 twice-partitions:
  (1)  (2)   (3)      (4)       (5)
       (11)  (21)     (22)      (32)
             (111)    (31)      (41)
             (11)(1)  (211)     (221)
                      (1111)    (311)
                      (21)(1)   (2111)
                      (111)(1)  (11111)
                                (21)(2)
                                (22)(1)
                                (3)(11)
                                (31)(1)
                                (111)(2)
                                (211)(1)
                                (111)(11)
                                (1111)(1)
		

Crossrefs

This is the case of A271619 with distinct lengths.
These multiset partitions are ranked by A326535 /\ A326533.
This is the case of A358830 with distinct sums.
For constant instead of distinct lengths and sums we have A358833.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A273873 counts strict trees.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],UnsameQ@@Total/@#&&UnsameQ@@Length/@#&]],{n,0,10}]
  • PARI
    seq(n)={ local(Cache=Map());
      my(g=Vec(-1+1/prod(k=1, n, 1 - y*x^k + O(x*x^n))));
      my(F(m,r,b) = my(key=[m,r,b], z); if(!mapisdefined(Cache,key,&z),
      z = if(r<=0||m==0, r==0, self()(m-1, r, b) + sum(k=1, m, my(c=polcoef(g[m],k)); if(!bittest(b,k)&&c, c*self()(min(m-1,r-m), r-m, bitor(b, 1<Andrew Howroyd, Dec 31 2022

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2022

A382301 Number of integer partitions of n having a unique multiset partition into constant blocks with distinct sums.

Original entry on oeis.org

1, 1, 2, 2, 3, 6, 8, 9, 14, 16, 25, 30, 41, 52, 69, 83, 105, 129, 164, 208, 263, 315, 388, 449, 573, 694
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Examples

			The a(4) = 3 through a(8) = 14 partitions and their unique multiset partition into constant blocks with distinct sums:
  {4}     {5}       {6}         {7}        {8}
  {22}    {1}{4}    {33}        {1}{6}     {44}
  {1}{3}  {2}{3}    {1}{5}      {2}{5}     {1}{7}
          {11}{3}   {2}{4}      {3}{4}     {2}{6}
          {1}{22}   {11}{4}     {11}{5}    {3}{5}
          {2}{111}  {11}{22}    {1}{33}    {11}{6}
                    {1}{2}{3}   {3}{22}    {2}{33}
                    {1}{11}{3}  {1}{2}{4}  {11}{33}
                                {3}{1111}  {11}{222}
                                           {1}{2}{5}
                                           {1}{3}{4}
                                           {1}{3}{22}
                                           {1}{4}{111}
                                           {1}{111}{22}
		

Crossrefs

For distinct blocks instead of block-sums we have A000726, ranks A004709.
Twice-partitions of this type (constant with distinct) are counted by A279786.
MM-numbers of these multiset partitions are A326535 /\ A355743.
For no choices we have A381717, ranks A381636, zeros of A381635.
The Heinz numbers of these partitions are A381991, positions of 1 in A381635.
Normal multiset partitions of this type are counted by A382203.
For at least one choice we have A382427.
For strict instead of constant blocks we have A382460, ranks A381870.
A000041 counts integer partitions, strict A000009.
A000688 counts factorizations into prime powers, see A381455, A381453.
A001055 counts factorizations, strict A045778, see A317141, A300383, A265947.
A050361 counts factorizations into distinct prime powers.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[pfacs[Times@@Prime/@#],UnsameQ@@hwt/@#&]]==1&]],{n,0,10}]
Previous Showing 11-20 of 26 results. Next