cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A330997 Sorted list containing the least number with each possible nonzero number of factorizations into distinct factors > 1.

Original entry on oeis.org

1, 6, 12, 24, 48, 60, 64, 96, 120, 144, 180, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 720, 840, 864, 900, 960, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 2048, 2160, 2304, 2310, 2520, 2592, 2880, 3072, 3360, 3456, 3600, 3840, 4320
Offset: 1

Views

Author

Gus Wiseman, Jan 06 2020

Keywords

Examples

			The strict factorizations of a(n) for n = 1..9.
  {}  6    12   24     48     60      64     96      120
      2*3  2*6  3*8    6*8    2*30    2*32   2*48    2*60
           3*4  4*6    2*24   3*20    4*16   3*32    3*40
                2*12   3*16   4*15    2*4*8  4*24    4*30
                2*3*4  4*12   5*12           6*16    5*24
                       2*3*8  6*10           8*12    6*20
                       2*4*6  2*5*6          2*6*8   8*15
                              3*4*5          3*4*8   10*12
                              2*3*10         2*3*16  3*5*8
                                             2*4*12  4*5*6
                                                     2*3*20
                                                     2*4*15
                                                     2*5*12
                                                     2*6*10
                                                     3*4*10
                                                     2*3*4*5
		

Crossrefs

All terms belong to A025487.
Strict factorizations are A045778, with image A045779.
The unsorted version is A045780.
The non-strict version is A330972.
The least number with n strict factorizations is A330974.

Programs

  • Mathematica
    nn=1000;
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    nds=Length/@Array[strfacs,nn];
    Table[Position[nds,i][[1,1]],{i,First/@Gather[nds]}]

A330975 Numbers that are not the number of factorizations of n into distinct factors > 1 for any n.

Original entry on oeis.org

11, 13, 20, 23, 24, 26, 28, 29, 30, 35, 36, 37, 39, 41, 45, 47, 48, 49, 50, 51, 53, 58, 60, 62, 63, 65, 66, 68, 69, 71, 72, 73, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 90, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108, 109, 113, 114, 115, 118
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

Warning: I have only confirmed the first three terms. The rest are derived from A045779. - Gus Wiseman, Jan 07 2020

Crossrefs

Complement of A045779.
The non-strict version is A330976.
Factorizations are A001055, with image A045782, with complement A330976.
Strict factorizations are A045778, with image A045779.
The least positive integer with n strict factorizations is A330974(n).

Programs

  • Mathematica
    nn=20;
    fam[n_]:=fam[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[fam[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nds=Length/@Array[Select[fam[#],UnsameQ@@#&]&,2^nn];
    Complement[Range[nn],nds]

A330989 Least positive integer with exactly 2^n factorizations into factors > 1, or 0 if no such integer exists.

Original entry on oeis.org

1, 4, 12, 0, 72, 0, 480
Offset: 0

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Examples

			The A001055(n) factorizations for n = 1, 4, 12, 72:
  ()  (4)    (12)     (72)
      (2*2)  (2*6)    (8*9)
             (3*4)    (2*36)
             (2*2*3)  (3*24)
                      (4*18)
                      (6*12)
                      (2*4*9)
                      (2*6*6)
                      (3*3*8)
                      (3*4*6)
                      (2*2*18)
                      (2*3*12)
                      (2*2*2*9)
                      (2*2*3*6)
                      (2*3*3*4)
                      (2*2*2*3*3)
		

Crossrefs

All nonzero terms belong to A025487 and also A033833.
Factorizations are A001055, with image A045782.
The least number with exactly n factorizations is A330973(n).
Numbers whose number of factorizations is a power of 2 are A330977.
The least number with exactly prime(n) factorizations is A330992(n).

A050322 Number of factorizations indexed by prime signatures: A001055(A025487).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 7, 5, 7, 9, 12, 11, 11, 16, 19, 21, 15, 29, 26, 30, 15, 31, 38, 22, 47, 52, 45, 36, 57, 64, 30, 77, 98, 67, 74, 97, 66, 105, 42, 109, 118, 92, 109, 171, 97, 141, 162, 137, 165, 56, 212, 181, 52, 198, 189, 289, 139, 250, 257, 269, 254, 77, 382, 267
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

For A025487(m) = 2^k = A000079(k), we have a(m) = A000041(k).
Is a(k) = A000110(k) for A025487(m) = A002110(k)?

Examples

			From _Gus Wiseman_, Jan 13 2020: (Start)
The a(1) = 1 through a(11) = 9 factorizations:
  {}  2  4    6    8      12     16       24       30     32         36
         2*2  2*3  2*4    2*6    2*8      3*8      5*6    4*8        4*9
                   2*2*2  3*4    4*4      4*6      2*15   2*16       6*6
                          2*2*3  2*2*4    2*12     3*10   2*2*8      2*18
                                 2*2*2*2  2*2*6    2*3*5  2*4*4      3*12
                                          2*3*4           2*2*2*4    2*2*9
                                          2*2*2*3         2*2*2*2*2  2*3*6
                                                                     3*3*4
                                                                     2*2*3*3
(End)
		

Crossrefs

The version indexed by unsorted prime signature is A331049.
The version indexed by prime shadow (A181819, A181821) is A318284.
This sequence has range A045782 (same as A001055).

Programs

  • Maple
    A050322 := proc(n)
        A001055(A025487(n)) ;
    end proc: # R. J. Mathar, May 25 2017
  • Mathematica
    c[1, r_] := c[1, r] = 1; c[n_, r_] := c[n, r] = Module[{d, i}, d = Select[Divisors[n], 1 < # <= r &]; Sum[c[n/d[[i]], d[[i]]], {i, 1, Length[d]}]]; Map[c[#, #] &, Union@ Table[Times @@ MapIndexed[If[n == 1, 1, Prime[First@ #2]]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]], {n, Product[Prime@ i, {i, 6}]}]] (* Michael De Vlieger, Jul 10 2017, after Dean Hickerson at A001055 *)
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Length/@facs/@First/@GatherBy[Range[1000],If[#==1,{},Sort[Last/@FactorInteger[#]]]&] (* Gus Wiseman, Jan 13 2020 *)

A330998 Sorted list containing the least number whose inverse prime shadow (A181821) has each possible nonzero number of factorizations into factors > 1.

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

This is the sorted list of positions of first appearances in A318284 of each element of the range A045782.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The inverse prime shadow of n is the least number whose prime exponents are the prime indices of n.

Examples

			Factorizations of the inverse prime shadows of the initial terms:
    4    8      12     16       36       24       60       48
    2*2  2*4    2*6    2*8      4*9      3*8      2*30     6*8
         2*2*2  3*4    4*4      6*6      4*6      3*20     2*24
                2*2*3  2*2*4    2*18     2*12     4*15     3*16
                       2*2*2*2  3*12     2*2*6    5*12     4*12
                                2*2*9    2*3*4    6*10     2*3*8
                                2*3*6    2*2*2*3  2*5*6    2*4*6
                                3*3*4             3*4*5    3*4*4
                                2*2*3*3           2*2*15   2*2*12
                                                  2*3*10   2*2*2*6
                                                  2*2*3*5  2*2*3*4
                                                           2*2*2*2*3
The corresponding multiset partitions:
    {11}    {111}      {112}      {1111}        {1122}        {1112}
    {1}{1}  {1}{11}    {1}{12}    {1}{111}      {1}{122}      {1}{112}
            {1}{1}{1}  {2}{11}    {11}{11}      {11}{22}      {11}{12}
                       {1}{1}{2}  {1}{1}{11}    {12}{12}      {2}{111}
                                  {1}{1}{1}{1}  {2}{112}      {1}{1}{12}
                                                {1}{1}{22}    {1}{2}{11}
                                                {1}{2}{12}    {1}{1}{1}{2}
                                                {2}{2}{11}
                                                {1}{1}{2}{2}
		

Crossrefs

Taking n instead of the inverse prime shadow of n gives A330972.
Factorizations are A001055, with image A045782, with complement A330976.
Factorizations of inverse prime shadows are A318284.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    nds=Table[Length[facs[Times@@Prime/@nrmptn[n]]],{n,50}];
    Table[Position[nds,i][[1,1]],{i,First/@Gather[nds]}]

A331050 Positive integers whose number of factorizations into factors > 1 (A001055) is odd.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 11, 13, 16, 17, 19, 23, 24, 27, 29, 30, 31, 32, 36, 37, 40, 41, 42, 43, 47, 53, 54, 56, 59, 60, 61, 64, 66, 67, 70, 71, 73, 78, 79, 81, 83, 84, 88, 89, 90, 96, 97, 100, 101, 102, 103, 104, 105, 107, 109, 110, 113, 114, 120, 125, 126, 127, 128
Offset: 1

Views

Author

Gus Wiseman, Jan 10 2020

Keywords

Comments

First differs from A319239 in lacking 256.

Crossrefs

Complement of A331051.
The version for powers of two (instead of odds) is A330977.
The version for primes (instead of odds) is A330991.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],OddQ[Length[facs[#]]]&]

A330992 Least positive integer with exactly prime(n) factorizations into factors > 1, or 0 if no such integer exists.

Original entry on oeis.org

4, 8, 16, 24, 60, 0, 0, 96, 0, 144, 216, 0, 0, 0, 288, 0, 0, 0, 768, 0, 0, 0, 0, 0, 864, 8192, 0, 0, 1080, 0, 0, 0, 1800, 3072, 0, 0, 0, 0, 0, 0, 0, 2304, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3456, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24576
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Examples

			Factorizations of the initial positive terms are:
  4    8      16       24       60       96
  2*2  2*4    2*8      3*8      2*30     2*48
       2*2*2  4*4      4*6      3*20     3*32
              2*2*4    2*12     4*15     4*24
              2*2*2*2  2*2*6    5*12     6*16
                       2*3*4    6*10     8*12
                       2*2*2*3  2*5*6    2*6*8
                                3*4*5    3*4*8
                                2*2*15   4*4*6
                                2*3*10   2*2*24
                                2*2*3*5  2*3*16
                                         2*4*12
                                         2*2*3*8
                                         2*2*4*6
                                         2*3*4*4
                                         2*2*2*12
                                         2*2*2*2*6
                                         2*2*2*3*4
                                         2*2*2*2*2*3
		

Crossrefs

All positive terms belong to A025487 and also A033833.
Factorizations are A001055, with image A045782, with complement A330976.
Numbers whose number of partitions is prime are A046063.
Numbers whose number of strict partitions is prime are A035359.
Numbers whose number of set partitions is prime are A051130.
Numbers with a prime number of factorizations are A330991.
The least number with exactly 2^n factorizations is A330989(n).

Extensions

More terms from Jinyuan Wang, Jul 07 2021

A330990 Numbers whose inverse prime shadow (A181821) has its number of factorizations into factors > 1 (A001055) equal to a power of 2 (A000079).

Original entry on oeis.org

1, 2, 3, 4, 6, 15, 44
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The inverse prime shadow of n is the least number whose prime exponents are the prime indices of n.

Examples

			The factorizations of A181821(n) for n = 1, 2, 3, 4, 6, 15:
  ()  (2)  (4)    (6)    (12)     (72)
           (2*2)  (2*3)  (2*6)    (8*9)
                         (3*4)    (2*36)
                         (2*2*3)  (3*24)
                                  (4*18)
                                  (6*12)
                                  (2*4*9)
                                  (2*6*6)
                                  (3*3*8)
                                  (3*4*6)
                                  (2*2*18)
                                  (2*3*12)
                                  (2*2*2*9)
                                  (2*2*3*6)
                                  (2*3*3*4)
                                  (2*2*2*3*3)
		

Crossrefs

The same for prime numbers (instead of powers of 2) is A330993,
Factorizations are A001055, with image A045782.
Numbers whose number of factorizations is a power of 2 are A330977.
The least number with exactly 2^n factorizations is A330989.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],IntegerQ[Log[2,Length[facs[Times@@Prime/@nrmptn[#]]]]]&]

Formula

A001055(A181821(a(n))) = 2^k for some k >= 0.

A331200 Least number with each record number of factorizations into distinct factors > 1.

Original entry on oeis.org

1, 6, 12, 24, 48, 60, 96, 120, 180, 240, 360, 480, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 4320, 5040, 7560, 8640, 10080, 15120, 20160, 25200, 30240, 40320, 45360, 50400, 55440, 60480, 75600, 90720, 100800, 110880, 120960, 151200, 181440, 221760
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A330997 in lacking 64.

Examples

			Strict factorizations of the initial terms:
  ()  (6)    (12)   (24)     (48)     (60)      (96)      (120)
      (2*3)  (2*6)  (3*8)    (6*8)    (2*30)    (2*48)    (2*60)
             (3*4)  (4*6)    (2*24)   (3*20)    (3*32)    (3*40)
                    (2*12)   (3*16)   (4*15)    (4*24)    (4*30)
                    (2*3*4)  (4*12)   (5*12)    (6*16)    (5*24)
                             (2*3*8)  (6*10)    (8*12)    (6*20)
                             (2*4*6)  (2*5*6)   (2*6*8)   (8*15)
                                      (3*4*5)   (3*4*8)   (10*12)
                                      (2*3*10)  (2*3*16)  (3*5*8)
                                                (2*4*12)  (4*5*6)
                                                          (2*3*20)
                                                          (2*4*15)
                                                          (2*5*12)
                                                          (2*6*10)
                                                          (3*4*10)
                                                          (2*3*4*5)
		

Crossrefs

A subset of A330997.
All terms belong to A025487.
This is the strict version of highly factorable numbers A033833.
The corresponding records are A331232(n) = A045778(a(n)).
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).
The least number with A045779(n) strict factorizations is A045780(n)

Programs

  • Mathematica
    nn=1000;
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    qv=Table[Length[strfacs[n]],{n,nn}];
    Table[Position[qv,i][[1,1]],{i,Union[qv//.{foe___,x_,y_,afe___}/;x>y:>{foe,x,afe}]}]

Extensions

a(37) and beyond from Giovanni Resta, Jan 17 2020

A331232 Record numbers of factorizations into distinct factors > 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 10, 16, 18, 25, 34, 38, 57, 59, 67, 70, 91, 100, 117, 141, 161, 193, 253, 296, 306, 426, 552, 685, 692, 960, 1060, 1067, 1216, 1220, 1589, 1591, 1912, 2029, 2157, 2524, 2886, 3249, 3616, 3875, 4953, 5147, 5285, 5810, 6023, 6112, 6623, 8129
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Examples

			Representatives for the initial records and their strict factorizations:
  ()  (6)    (12)   (24)     (48)     (60)      (96)      (120)
      (2*3)  (2*6)  (3*8)    (6*8)    (2*30)    (2*48)    (2*60)
             (3*4)  (4*6)    (2*24)   (3*20)    (3*32)    (3*40)
                    (2*12)   (3*16)   (4*15)    (4*24)    (4*30)
                    (2*3*4)  (4*12)   (5*12)    (6*16)    (5*24)
                             (2*3*8)  (6*10)    (8*12)    (6*20)
                             (2*4*6)  (2*5*6)   (2*6*8)   (8*15)
                                      (3*4*5)   (3*4*8)   (10*12)
                                      (2*3*10)  (2*3*16)  (3*5*8)
                                                (2*4*12)  (4*5*6)
                                                          (2*3*20)
                                                          (2*4*15)
                                                          (2*5*12)
                                                          (2*6*10)
                                                          (3*4*10)
                                                          (2*3*4*5)
		

Crossrefs

The non-strict version is A272691.
The first appearance of a(n) in A045778 is at index A331200(n).
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).
The least number with A045779(n) strict factorizations is A045780(n).

Programs

  • Mathematica
    nn=1000;
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    qv=Table[Length[strfacs[n]],{n,nn}];
    Union[qv//.{foe___,x_,y_,afe___}/;x>y:>{foe,x,afe}]
  • Python
    def fact(num):
        ret = []
        temp = num
        div = 2
        while temp > 1:
            while temp % div == 0:
                ret.append(div)
                temp //= div
            div += 1
        return ret
    def all_partitions(lst):
        if lst:
            x = lst[0]
            for partition in all_partitions(lst[1:]):
                yield [x] + partition
                for i, _ in enumerate(partition):
                    partition[i] *= x
                    yield partition
                    partition[i] //= x
        else:
            yield []
    best = 0
    terms = [0]
    q = 2
    while len(terms) < 100:
        total_set = set()
        factors = fact(q)
        total_set = set(tuple(sorted(x)) for x in all_partitions(factors) if len(x) == len(set(x)))
        if len(total_set) > best:
            best = len(total_set)
            terms.append(best)
            print(q,best)
        q += 2#only check evens
    print(terms)
    #  David Consiglio, Jr., Jan 14 2020

Formula

a(n) = A045778(A331200(n)).

Extensions

a(26)-a(37) from David Consiglio, Jr., Jan 14 2020
a(38) and beyond from Giovanni Resta, Jan 17 2020
Previous Showing 11-20 of 25 results. Next