cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 148 results. Next

A107428 Number of gap-free compositions of n.

Original entry on oeis.org

1, 2, 4, 6, 11, 21, 39, 71, 141, 276, 542, 1070, 2110, 4189, 8351, 16618, 33134, 66129, 131937, 263483, 526453, 1051984, 2102582, 4203177, 8403116, 16800894, 33593742, 67174863, 134328816, 268624026, 537192064, 1074288649, 2148414285, 4296543181, 8592585289
Offset: 1

Views

Author

N. J. A. Sloane, May 26 2005

Keywords

Comments

A gap-free composition contains all the parts between its smallest and largest part. a(5)=11 because we have: 5, 3+2, 2+3, 2+2+1, 2+1+2, 1+2+2, 2+1+1+1, 1+2+1+1, 1+1+2+1, 1+1+1+2, 1+1+1+1+1. - Geoffrey Critzer, Apr 13 2014

Examples

			From _Gus Wiseman_, Oct 04 2022: (Start)
The a(0) = 1 through a(5) = 11 gap-free compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (22)    (23)
                 (21)   (112)   (32)
                 (111)  (121)   (122)
                        (211)   (212)
                        (1111)  (221)
                                (1112)
                                (1121)
                                (1211)
                                (2111)
                                (11111)
(End)
		

Crossrefs

The unordered version (partitions) is A034296, ranked by A073491.
The initial case is A107429, unordered A000009, ranked by A333217.
The unordered complement is counted by A239955, ranked by A073492.
These compositions are ranked by A356841.
The complement is counted by A356846, ranked by A356842
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t!,
          `if`(i<1 or n add(b(n, i, 0), i=1..n):
    seq(a(n), n=1..40);  # Alois P. Heinz, Apr 14 2014
  • Mathematica
    Table[Length[Select[Level[Map[Permutations,IntegerPartitions[n]],{2}],Length[Union[#]]==Max[#]-Min[#]+1&]],{n,1,20}] (* Geoffrey Critzer, Apr 13 2014 *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, t!, If[i < 1 || n < i, 0, Sum[b[n - i*j, i - 1, t + j]/j!, {j, 1, n/i}]]]; a[n_] := Sum[b[n, i, 0], {i, 1, n}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)

Formula

a(n) ~ 2^(n-2). - Alois P. Heinz, Dec 07 2014
G.f.: Sum_{j>0} Sum_{k>=j} C({j..k},x) where C({s},x) = Sum_{i in {s}} (C({s}-{i},x)*x^i)/(1 - Sum_{i in {s}} (x^i)) is the g.f. for compositions such that the set of parts equals {s} with C({},x) = 1. - John Tyler Rascoe, Jun 01 2024

Extensions

More terms from Vladeta Jovovic, May 26 2005

A246534 a(n) = Sum_{k=1..n} 2^(T(k)-1), where T(k)=k(k+1)/2 = A000217(k).

Original entry on oeis.org

0, 1, 5, 37, 549, 16933, 1065509, 135283237, 34495021605, 17626681066021, 18032025190548005, 36911520172609651237, 151152638972001256489509, 1238091191924352276155613733, 20283647694843594776223406899749, 664634281540152780046679753547072037
Offset: 0

Views

Author

M. F. Hasler, Aug 28 2014

Keywords

Comments

Similar to A181388, this occurs as binary encoding of a straight n-omino lying on the y-axis, when the grid points of the first quadrant (N x N, N={0,1,2,...}) are given the weight 2^k, with k=0, 1,2, 3,4,5, ... filled in by antidiagonals.
Numbers k such that the k-th composition in standard order (row k of A066099) is a reversed initial interval. - Gus Wiseman, Apr 02 2020

Examples

			Label the cells of an infinite square matrix with 0,1,2,3,... along antidiagonals:
  0 1 3 6 10 ...
  2 4 7 ...
  5 8 ...
  9 ...
  ....
Now any subset of these cells can be represented by the sum of 2 raised to the power written in the given cells. In particular, the subset consisting of the first cell in the first 1, 2, 3, ... rows is represented by 2^0, 2^0+2^2, 2^0+2^2+2^5, ...
		

Crossrefs

The version for prime (rather than binary) indices is A002110.
The non-strict generalization is A114994.
The non-reversed version is A164894.
Intersection of A333256 and A333217.
Partial sums of A036442.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Select[Range[0,1000],normQ[stc[#]]&&Greater@@stc[#]&] (* Gus Wiseman, Apr 02 2020 *)
  • PARI
    t=0;vector(20,n,t+=2^(n*(n+1)/2-1)) \\ yields the vector starting with a[1]=1
    
  • PARI
    t=0;vector(20,n,if(n>1,t+=2^(n*(n-1)/2-1))) \\ yields the vector starting with 0
    
  • Python
    a = 0
    for n in range(1,17): print(a, end =', '); a += 1<<(n-1)*(n+2)//2 # Ya-Ping Lu, Jan 23 2024

A057335 a(0) = 1, and for n > 0, a(n) = A000040(A000120(n)) * a(floor(n/2)); essentially sequence A055932 generated using A000120, hence sorted by number of factors.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 18, 30, 16, 24, 36, 60, 54, 90, 150, 210, 32, 48, 72, 120, 108, 180, 300, 420, 162, 270, 450, 630, 750, 1050, 1470, 2310, 64, 96, 144, 240, 216, 360, 600, 840, 324, 540, 900, 1260, 1500, 2100, 2940, 4620, 486, 810, 1350, 1890, 2250, 3150, 4410
Offset: 0

Views

Author

Alford Arnold, Aug 27 2000

Keywords

Comments

Note that for n>0 the prime divisors of a(n) are consecutive primes starting with 2. All of the least prime signatures (A025487) are included; with the other values forming A056808.
Using the formula, terms of b(n)= a(n)/A057334(n) are: 1, 1, 2, 2, 4, 4, 6, 6, 8, ..., indeed a(n) repeated. - Michel Marcus, Feb 09 2014
a(n) is the unique normal number whose unsorted prime signature is the k-th composition in standard order (graded reverse-lexicographic). This composition (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. A number is normal if its prime indices cover an initial interval of positive integers. Unsorted prime signature is the sequence of exponents in a number's prime factorization. - Gus Wiseman, Apr 19 2020

Examples

			From _Gus Wiseman_, Apr 19 2020: (Start)
The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      4: {1,1}
      6: {1,2}
      8: {1,1,1}
     12: {1,1,2}
     18: {1,2,2}
     30: {1,2,3}
     16: {1,1,1,1}
     24: {1,1,1,2}
     36: {1,1,2,2}
     60: {1,1,2,3}
     54: {1,2,2,2}
     90: {1,2,2,3}
    150: {1,2,3,3}
    210: {1,2,3,4}
     32: {1,1,1,1,1}
     48: {1,1,1,1,2}
For example, the 27th composition in standard order is (1,2,1,1), and the normal number with prime signature (1,2,1,1) is 630 = 2*3*3*5*7, so a(27) = 630.
(End)
		

Crossrefs

Cf. A324939.
Unsorted prime signature is A124010.
Numbers whose prime signature is aperiodic are A329139.
The reversed version is A334031.
A partial inverse is A334032.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Aperiodic compositions are A328594.
- Normal compositions are A333217.
- Permutations are A333218.
- Heinz number is A333219.
Related to A019565 via A122111 and to A000079 via A336321.

Programs

  • Mathematica
    Table[Times @@ Map[If[# == 0, 1, Prime@ #] &, Accumulate@ IntegerDigits[n, 2]], {n, 0, 54}] (* Michael De Vlieger, May 23 2017 *)
  • PARI
    mg(n) = if (n==0, 1, prime(hammingweight(n))); \\ A057334
    lista(nn) = {my(v = vector(nn)); v[1] = 1; for (i=2, nn, v[i] = mg(i-1)*v[(i+1)\2];); v;} \\ Michel Marcus, Feb 09 2014
    
  • PARI
    A057335(n) = if(0==n,1,prime(hammingweight(n))*A057335(n\2)); \\ Antti Karttunen, Jul 20 2020

Formula

a(n) = A057334(n) * a (repeated).
A334032(a(n)) = n; a(A334032(n)) = A071364(n). - Gus Wiseman, Apr 19 2020
a(n) = A122111(A019565(n)); A019565(n) = A122111(a(n)). - Peter Munn, Jul 18 2020
a(n) = A336321(2^n). - Peter Munn, Mar 04 2022
Sum_{n>=0} 1/a(n) = Sum_{n>=0} 1/A005867(n) = 2.648101... (A345974). - Amiram Eldar, Jun 26 2025

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
New primary name from Antti Karttunen, Jul 20 2020

A333222 Numbers k such that every restriction of the k-th composition in standard order to a subinterval has a different sum.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 12, 16, 17, 18, 20, 24, 32, 33, 34, 40, 41, 48, 50, 64, 65, 66, 68, 69, 70, 72, 80, 81, 88, 96, 98, 104, 128, 129, 130, 132, 133, 134, 144, 145, 160, 161, 176, 192, 194, 196, 208, 256, 257, 258, 260, 261, 262, 264, 265, 268, 272, 274
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2020

Keywords

Comments

Also numbers whose binary indices together with 0 define a Golomb ruler.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The list of terms together with the corresponding compositions begins:
    0: ()        41: (2,3,1)    130: (6,2)      262: (6,1,2)
    1: (1)       48: (1,5)      132: (5,3)      264: (5,4)
    2: (2)       50: (1,3,2)    133: (5,2,1)    265: (5,3,1)
    4: (3)       64: (7)        134: (5,1,2)    268: (5,1,3)
    5: (2,1)     65: (6,1)      144: (3,5)      272: (4,5)
    6: (1,2)     66: (5,2)      145: (3,4,1)    274: (4,3,2)
    8: (4)       68: (4,3)      160: (2,6)      276: (4,2,3)
    9: (3,1)     69: (4,2,1)    161: (2,5,1)    288: (3,6)
   12: (1,3)     70: (4,1,2)    176: (2,1,5)    289: (3,5,1)
   16: (5)       72: (3,4)      192: (1,7)      290: (3,4,2)
   17: (4,1)     80: (2,5)      194: (1,5,2)    296: (3,2,4)
   18: (3,2)     81: (2,4,1)    196: (1,4,3)    304: (3,1,5)
   20: (2,3)     88: (2,1,4)    208: (1,2,5)    320: (2,7)
   24: (1,4)     96: (1,6)      256: (9)        321: (2,6,1)
   32: (6)       98: (1,4,2)    257: (8,1)      324: (2,4,3)
   33: (5,1)    104: (1,2,4)    258: (7,2)      328: (2,3,4)
   34: (4,2)    128: (8)        260: (6,3)      352: (2,1,6)
   40: (2,4)    129: (7,1)      261: (6,2,1)    384: (1,8)
		

Crossrefs

A subset of A233564.
Also a subset of A333223.
These compositions are counted by A169942 and A325677.
The number of distinct nonzero subsequence-sums is A333224.
The number of distinct subsequence-sums is A333257.
Lengths of optimal Golomb rulers are A003022.
Inequivalent optimal Golomb rulers are counted by A036501.
Complete rulers are A103295, with perfect case A103300.
Knapsack partitions are counted by A108917, with strict case A275972.
Distinct subsequences are counted by A124770 and A124771.
Golomb subsets are counted by A143823.
Heinz numbers of knapsack partitions are A299702.
Knapsack compositions are counted by A325676.
Maximal Golomb rulers are counted by A325683.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,300],UnsameQ@@ReplaceList[stc[#],{_,s__,_}:>Plus[s]]&]

A022340 Even Fibbinary numbers (A003714); also 2*Fibbinary(n).

Original entry on oeis.org

0, 2, 4, 8, 10, 16, 18, 20, 32, 34, 36, 40, 42, 64, 66, 68, 72, 74, 80, 82, 84, 128, 130, 132, 136, 138, 144, 146, 148, 160, 162, 164, 168, 170, 256, 258, 260, 264, 266, 272, 274, 276, 288, 290, 292, 296, 298, 320, 322, 324, 328, 330, 336, 338, 340, 512
Offset: 0

Views

Author

Keywords

Comments

Positions of ones in binomial(3k+2,k+1)/(3k+2) modulo 2 (A085405). - Paul D. Hanna, Jun 29 2003
Construction: start with strings S(0)={0}, S(1)={2}; for k>=2, concatenate all prior strings excluding S(k-1) and add 2^k to each element in the resulting string to obtain S(k); this sequence is the concatenation of all such generated strings: {S(0),S(1),S(2),...}. Example: for k=5, concatenate {S(0),S(1),S(2),S(3)} = {0, 2, 4, 8,10}; add 2^5 to each element to obtain S(5)={32,34,38,40,42}. - Paul D. Hanna, Jun 29 2003
From Gus Wiseman, Apr 08 2020: (Start)
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. This sequence lists all numbers k such that the k-th composition in standard order has no ones. For example, the sequence together with the corresponding compositions begins:
0: () 80: (2,5) 260: (6,3)
2: (2) 82: (2,3,2) 264: (5,4)
4: (3) 84: (2,2,3) 266: (5,2,2)
8: (4) 128: (8) 272: (4,5)
10: (2,2) 130: (6,2) 274: (4,3,2)
16: (5) 132: (5,3) 276: (4,2,3)
18: (3,2) 136: (4,4) 288: (3,6)
20: (2,3) 138: (4,2,2) 290: (3,4,2)
32: (6) 144: (3,5) 292: (3,3,3)
34: (4,2) 146: (3,3,2) 296: (3,2,4)
36: (3,3) 148: (3,2,3) 298: (3,2,2,2)
40: (2,4) 160: (2,6) 320: (2,7)
42: (2,2,2) 162: (2,4,2) 322: (2,5,2)
64: (7) 164: (2,3,3) 324: (2,4,3)
66: (5,2) 168: (2,2,4) 328: (2,3,4)
68: (4,3) 170: (2,2,2,2) 330: (2,3,2,2)
72: (3,4) 256: (9) 336: (2,2,5)
74: (3,2,2) 258: (7,2) 338: (2,2,3,2)
(End)

Crossrefs

Equals 2 * A003714.
Compositions with no ones are counted by A212804.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Compositions without terms > 2 are A003754.
- Compositions without ones are A022340 (this sequence).
- Sum is A070939.
- Compositions with no twos are A175054.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Normal compositions are A333217.
- Runs-resistance is A333628.

Programs

  • Haskell
    a022340 = (* 2) . a003714 -- Reinhard Zumkeller, Feb 03 2015
    
  • Mathematica
    f[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr, 2]]; Select[f /@ Range[0, 95], EvenQ[ # ] &] (* Robert G. Wilson v, Sep 18 2004 *)
    Select[Range[2, 512, 2], BitAnd[#, 2#] == 0 &] (* Alonso del Arte, Jun 18 2012 *)
  • Python
    from itertools import count, islice
    def A022340_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:not n&(n>>1),count(max(0,startvalue+(startvalue&1)),2))
    A022340_list = list(islice(A022340_gen(),30)) # Chai Wah Wu, Sep 07 2022
    
  • Python
    def A022340(n):
        tlist, s = [1,2], 0
        while tlist[-1]+tlist[-2] <= n: tlist.append(tlist[-1]+tlist[-2])
        for d in tlist[::-1]:
            if d <= n:
                s += 1
                n -= d
            s <<= 1
        return s # Chai Wah Wu, Apr 24 2025

Formula

For n>0, a(F(n))=2^n, a(F(n)-1)=A001045(n+2)-1, where F(n) is the n-th Fibonacci number with F(0)=F(1)=1.
a(n) + a(n)/2 = a(n) XOR a(n)/2, see A106409. - Reinhard Zumkeller, May 02 2005

Extensions

Edited by Ralf Stephan, Sep 01 2004

A335460 Number of (1,2,1) or (2,1,2)-matching permutations of the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 6, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 8, 0, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 6, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2020

Keywords

Comments

Depends only on sorted prime signature (A118914).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(n) compositions for n = 12, 24, 48, 36, 60, 72:
  (121)  (1121)  (11121)  (1212)  (1213)  (11212)
         (1211)  (11211)  (1221)  (1231)  (11221)
                 (12111)  (2112)  (1312)  (12112)
                          (2121)  (1321)  (12121)
                                  (2131)  (12211)
                                  (3121)  (21112)
                                          (21121)
                                          (21211)
		

Crossrefs

Positions of zeros are A303554.
The (1,2,1)-matching part is A335446.
The (2,1,2)-matching part is A335453.
Replacing "or" with "and" gives A335462.
Permutations of prime indices are counted by A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
STC-numbers of permutations of prime indices are A333221.
(1,2,1) and (2,1,2)-avoiding permutations of prime indices are A333175.
Patterns matched by standard compositions are counted by A335454.
(1,2,1) and (2,1,2)-matching permutations of prime indices are A335462.
Dimensions of downsets of standard compositions are A335465.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],MatchQ[#,{_,x_,_,y_,_,x_,_}/;x!=y]&]],{n,100}]

A335515 Number of patterns of length n matching the pattern (1,2,3).

Original entry on oeis.org

0, 0, 0, 1, 19, 257, 3167, 38909, 498235, 6811453, 100623211, 1612937661, 28033056683, 526501880989, 10639153638795, 230269650097469, 5315570416909995, 130370239796988957, 3385531348514480651, 92801566389186549245, 2677687663571344712043, 81124824154544921317597
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2020

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(3) = 1 through a(4) = 19 patterns:
  (1,2,3)  (1,1,2,3)
           (1,2,1,3)
           (1,2,2,3)
           (1,2,3,1)
           (1,2,3,2)
           (1,2,3,3)
           (1,2,3,4)
           (1,2,4,3)
           (1,3,2,3)
           (1,3,2,4)
           (1,3,4,2)
           (1,4,2,3)
           (2,1,2,3)
           (2,1,3,4)
           (2,3,1,4)
           (2,3,4,1)
           (3,1,2,3)
           (3,1,2,4)
           (4,1,2,3)
		

Crossrefs

The complement A226316 is the avoiding version.
Compositions matching this pattern are counted by A335514 and ranked by A335479.
Permutations of prime indices matching this pattern are counted by A335520.
Patterns are counted by A000670 and ranked by A333217.
Patterns matching the pattern (1,1) are counted by A019472.
Permutations matching (1,2,3) are counted by A056986.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],MatchQ[#,{_,x_,_,y_,_,z_,_}/;x
    				
  • PARI
    seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - 1/2 - 1/(1+sqrt(1-8*x+8*x^2 + O(x*x^n))), -(n+1)) \\ Andrew Howroyd, Jan 28 2024

Formula

a(n) = A000670(n) - A226316(n). - Andrew Howroyd, Jan 28 2024

Extensions

a(9) onwards from Andrew Howroyd, Jan 28 2024

A335514 Number of (1,2,3)-matching compositions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 4, 14, 42, 114, 292, 714, 1686, 3871, 8696, 19178, 41667, 89386, 189739, 399144, 833290, 1728374, 3565148, 7319212, 14965880, 30496302, 61961380, 125577752, 253971555, 512716564, 1033496947, 2080572090, 4183940550, 8406047907, 16875834728
Offset: 0

Views

Author

Gus Wiseman, Jun 22 2020

Keywords

Examples

			The a(6) = 1 through a(8) = 14 compositions:
  (1,2,3)  (1,2,4)    (1,2,5)
           (1,1,2,3)  (1,3,4)
           (1,2,1,3)  (1,1,2,4)
           (1,2,3,1)  (1,2,1,4)
                      (1,2,2,3)
                      (1,2,3,2)
                      (1,2,4,1)
                      (2,1,2,3)
                      (1,1,1,2,3)
                      (1,1,2,1,3)
                      (1,1,2,3,1)
                      (1,2,1,1,3)
                      (1,2,1,3,1)
                      (1,2,3,1,1)
		

Crossrefs

The version for permutations is A056986.
The avoiding version is A102726.
These compositions are ranked by A335479.
The version for patterns is A335515.
The version for prime indices is A335520.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Patterns matched by compositions are counted by A335456.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,_,y_,_,z_,_}/;x
    				

Formula

a(n > 0) = 2^(n - 1) - A102726(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2020

A087117 Number of zeros in the longest string of consecutive zeros in the binary representation of n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 1, 0, 3, 2, 1, 1, 2, 1, 1, 0, 4, 3, 2, 2, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 0, 5, 4, 3, 3, 2, 2, 2, 2, 3, 2, 1, 1, 2, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 0, 6, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 4, 3, 3, 2, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 14 2003

Keywords

Comments

The following four statements are equivalent: a(n) = 0; n = 2^k - 1 for some k > 0; A087116(n) = 0; A023416(n) = 0.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. Then a(k) is the maximum part of this composition, minus one. The maximum part is A333766(k). - Gus Wiseman, Apr 09 2020

Crossrefs

Positions of zeros are A000225.
Positions of terms <= 1 are A003754.
Positions of terms > 0 are A062289.
Positions of first appearances are A131577.
The version for prime indices is A252735.
The proper maximum is A333766.
The version for minimum is A333767.
Maximum prime index is A061395.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Runs-resistance is A333628.
- Weakly decreasing compositions are A114994.
- Weakly increasing compositions are A225620.
- Strictly decreasing compositions are A333255.
- Strictly increasing compositions are A333256.

Programs

  • Haskell
    import Data.List (unfoldr, group)
    a087117 0       = 1
    a087117 n
      | null $ zs n = 0
      | otherwise   = maximum $ map length $ zs n where
      zs = filter ((== 0) . head) . group .
           unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2)
    -- Reinhard Zumkeller, May 01 2012
    
  • Maple
    A087117 := proc(n)
        local d,l,zlen ;
        if n = 0 then
            return 1 ;
        end if;
        d := convert(n,base,2) ;
        for l from nops(d)-1 to 0 by -1 do
            zlen := [seq(0,i=1..l)] ;
            if verify(zlen,d,'sublist') then
                return l ;
            end if;
        end do:
        return 0 ;
    end proc; # R. J. Mathar, Nov 05 2012
  • Mathematica
    nz[n_]:=Max[Length/@Select[Split[IntegerDigits[n,2]],MemberQ[#,0]&]]; Array[nz,110,0]/.-\[Infinity]->0 (* Harvey P. Dale, Sep 05 2017 *)
  • PARI
    h(n)=if(n<2, return(0)); my(k=valuation(n,2)); if(k, max(h(n>>k), k), n++; n>>=valuation(n,2); h(n-1))
    a(n)=if(n,h(n),1) \\ Charles R Greathouse IV, Apr 06 2022

Formula

a(n) = max(A007814(n), a(A025480(n-1))) for n >= 2. - Robert Israel, Feb 19 2017
a(2n+1) = a(n) (n>=1); indeed, the binary form of 2n+1 consists of the binary form of n with an additional 1 at the end - Emeric Deutsch, Aug 18 2017
For n > 0, a(n) = A333766(n) - 1. - Gus Wiseman, Apr 09 2020

A335462 Number of (1,2,1) and (2,1,2)-matching permutations of the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(n) permutations for n = 36, 72, 270, 144, 300:
  (1,2,1,2)  (1,1,2,1,2)  (2,1,2,3,2)  (1,1,1,2,1,2)  (1,2,3,1,3)
  (2,1,2,1)  (1,2,1,1,2)  (2,1,3,2,2)  (1,1,2,1,1,2)  (1,3,1,2,3)
             (1,2,1,2,1)  (2,2,1,3,2)  (1,1,2,1,2,1)  (1,3,1,3,2)
             (2,1,1,2,1)  (2,2,3,1,2)  (1,2,1,1,1,2)  (1,3,2,1,3)
             (2,1,2,1,1)  (2,3,1,2,2)  (1,2,1,1,2,1)  (1,3,2,3,1)
                          (2,3,2,1,2)  (1,2,1,2,1,1)  (2,1,3,1,3)
                                       (2,1,1,1,2,1)  (2,3,1,3,1)
                                       (2,1,1,2,1,1)  (3,1,2,1,3)
                                       (2,1,2,1,1,1)  (3,1,2,3,1)
                                                      (3,1,3,1,2)
                                                      (3,1,3,2,1)
                                                      (3,2,1,3,1)
		

Crossrefs

The avoiding version is A333175.
Replacing "and" with "or" gives A335460.
Positions of nonzero terms are A335463.
Permutations of prime indices are counted by A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
STC-numbers of permutations of prime indices are A333221.
Patterns matched by standard compositions are counted by A335454.
Dimensions of downsets of standard compositions are A335465.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],MatchQ[#,{_,x_,_,y_,_,x_,_}/;x_,x_,_,y_,_,x_,_}/;x>y]&]],{n,100}]
Previous Showing 41-50 of 148 results. Next