cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A370647 Numbers such that only one set can be obtained by choosing a different prime factor of each prime index.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 23, 31, 33, 35, 39, 41, 51, 53, 55, 59, 65, 67, 69, 77, 83, 85, 87, 91, 93, 95, 97, 103, 109, 111, 119, 123, 127, 129, 131, 155, 157, 161, 165, 169, 177, 179, 183, 185, 187, 191, 201, 203, 205, 209, 211, 213, 217, 227, 235, 237, 241
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 91 are {4,6}, with only choice {2,3}, so 91 is in the sequence.
The terms together with their prime indices begin:
     1: {}        53: {16}      109: {29}
     3: {2}       55: {3,5}     111: {2,12}
     5: {3}       59: {17}      119: {4,7}
     7: {4}       65: {3,6}     123: {2,13}
    11: {5}       67: {19}      127: {31}
    15: {2,3}     69: {2,9}     129: {2,14}
    17: {7}       77: {4,5}     131: {32}
    19: {8}       83: {23}      155: {3,11}
    23: {9}       85: {3,7}     157: {37}
    31: {11}      87: {2,10}    161: {4,9}
    33: {2,5}     91: {4,6}     165: {2,3,5}
    35: {3,4}     93: {2,11}    169: {6,6}
    39: {2,6}     95: {3,8}     177: {2,17}
    41: {13}      97: {25}      179: {41}
    51: {2,7}    103: {27}      183: {2,18}
		

Crossrefs

For nonexistence we have A355529, count A370593.
For binary instead of prime indices we have A367908, counted by A367904.
For existence we have A368100, count A370592.
For a sequence instead of set of factors we have A368101.
The version for subsets is A370584, see also A370582, A370583.
Maximal sets of this type are counted by A370585.
Partitions of this type are counted by A370594.
For subsets and binary indices we have A370638.
The version for factorizations is A370645, see also A368414, A368413.
For divisors instead of factors we have A370810, counted by A370595.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts ways to choose a prime factor of each prime index.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Union[Sort /@ Select[Tuples[prix/@prix[#]],UnsameQ@@#&]]]==1&]

A370804 Number of non-condensed integer partitions of n into parts > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 3, 3, 6, 6, 12, 14, 21, 25, 37, 43, 62, 75, 101, 124, 167, 198, 261, 316, 401, 488, 618, 745, 930, 1119, 1379, 1664, 2032, 2433, 2960, 3537, 4259, 5076, 6094, 7227, 8629, 10205, 12126, 14302, 16932, 19893, 23471, 27502, 32315, 37775
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2024

Keywords

Comments

These are partitions without ones such that it is not possible to choose a different divisor of each part.

Examples

			The a(6) = 1 through a(14) = 12 partitions:
  (222)  .  (2222)  (333)   (3322)   (3332)   (3333)    (4333)    (4442)
                    (3222)  (4222)   (5222)   (4422)    (7222)    (5333)
                            (22222)  (32222)  (6222)    (33322)   (5522)
                                              (33222)   (43222)   (8222)
                                              (42222)   (52222)   (33332)
                                              (222222)  (322222)  (43322)
                                                                  (44222)
                                                                  (53222)
                                                                  (62222)
                                                                  (332222)
                                                                  (422222)
                                                                  (2222222)
		

Crossrefs

These partitions have as ranks the odd terms of A355740.
The version with ones is A370320, complement A239312.
The complement without ones is A370805.
The version for prime factors is A370807, with ones A370593.
The version for factorizations is A370813, complement A370814.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741, A355744, A355745 choose prime factors of prime indices.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1] && Length[Select[Tuples[Divisors/@#],UnsameQ@@#&]]==0&]],{n,0,30}]

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A355736 Least k such that there are exactly n ways to choose a divisor of each prime index of k (taken in weakly increasing order) such that the result is also weakly increasing.

Original entry on oeis.org

1, 3, 7, 13, 21, 37, 39, 89, 133, 117, 111, 273, 351, 259, 267, 333, 453, 793, 669, 623, 999, 777, 843, 1491, 1157, 1561, 2863, 1443, 1963, 2331, 1977, 1869, 2899, 2529, 3207, 4107, 3171, 5073, 4329, 3653, 4667, 3471, 7399, 4613, 7587, 5931, 7269, 5889, 7483
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2022

Keywords

Comments

This is the position of first appearance of n in A355735.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     1: {}
     3: {2}
     7: {4}
    13: {6}
    21: {2,4}
    37: {12}
    39: {2,6}
    89: {24}
   133: {4,8}
   117: {2,2,6}
   111: {2,12}
   273: {2,4,6}
   351: {2,2,2,6}
For example, the choices for a(12) = 273 are:
  {1,1,1}  {1,2,2}  {2,2,2}
  {1,1,2}  {1,2,3}  {2,2,3}
  {1,1,3}  {1,2,6}  {2,2,6}
  {1,1,6}  {1,4,6}  {2,4,6}
		

Crossrefs

Allowing any choice of divisors gives A355732, firsts of A355731.
Choosing a multiset instead of sequence gives A355734, firsts of A355733.
Positions of first appearances in A355735.
The case of prime factors instead of divisors is counted by A355745.
The decreasing version is counted by A355749.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    az=Table[Length[Select[Tuples[Divisors/@primeMS[n]],LessEqual@@#&]],{n,1000}];
    Table[Position[az,k][[1,1]],{k,mnrm[az]}]

A355749 Number of ways to choose a weakly decreasing sequence of divisors, one of each prime index of n (with multiplicity, taken in weakly increasing order).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 3, 1, 3, 1, 3, 1, 4, 1, 4, 1, 2, 1, 2, 1, 3, 1, 6, 1, 3, 1, 2, 1, 4, 1, 3, 1, 4, 1, 6, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 6, 1, 4, 1, 4, 1, 2, 1, 2, 1, 6, 1, 4, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 2, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Jul 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(2) = 1 through a(19) = 4 choices:
  1  1  11  1  11  1  111  11  11  1  111  1  11  11  1111  1  111  1
     2      3      2       21      5       2      21        7       2
                   4       22              3                        4
                                           6                        8
		

Crossrefs

Allowing any choice of divisors gives A355731, firsts A355732.
Choosing a multiset instead of sequence gives A355733, firsts A355734.
The reverse version is A355735, firsts A355736, only primes A355745.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061395 selects the maximum prime index.

Programs

  • Mathematica
    Table[Length[Select[Tuples[Divisors/@primeMS[n]], GreaterEqual@@#&]],{n,100}]

A370591 Number of minimal subsets of {1..n} such that it is not possible to choose a different prime factor of each element (non-choosable).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 4, 4, 7, 11, 16, 16, 30, 30, 39, 73
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2024

Keywords

Examples

			The a(1) = 1 through a(10) = 16 subsets:
{1}  {1}  {1}  {1}    {1}    {1}      {1}      {1}      {1}      {1}
               {2,4}  {2,4}  {2,4}    {2,4}    {2,4}    {2,4}    {2,4}
                             {2,3,6}  {2,3,6}  {2,8}    {2,8}    {2,8}
                             {3,4,6}  {3,4,6}  {4,8}    {3,9}    {3,9}
                                               {2,3,6}  {4,8}    {4,8}
                                               {3,4,6}  {2,3,6}  {2,3,6}
                                               {3,6,8}  {2,6,9}  {2,6,9}
                                                        {3,4,6}  {3,4,6}
                                                        {3,6,8}  {3,6,8}
                                                        {4,6,9}  {4,6,9}
                                                        {6,8,9}  {6,8,9}
                                                                 {2,5,10}
                                                                 {4,5,10}
                                                                 {5,8,10}
                                                                 {3,5,6,10}
                                                                 {5,6,9,10}
		

Crossrefs

Minimal case of A370583, complement A370582.
For binary indices instead of factors we have A370642, minima of A370637.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370585 counts maximal choosable sets.
A370592 counts choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Length[fasmin[Select[Subsets[Range[n]], Length[Select[Tuples[prix/@#],UnsameQ@@#&]]==0&]]], {n,0,15}]

A370809 Greatest number of multisets that can be obtained by choosing a prime factor of each part of an integer partition of n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 4, 4, 6, 4, 6, 6, 6, 6, 8, 6, 8, 8, 9, 8, 10, 9, 12, 10, 12, 12, 12, 12, 16, 13, 16, 16, 18, 16, 20, 18, 20, 20, 24, 20, 24, 24, 24, 26, 30, 26, 30, 30, 32, 32, 36, 32, 36, 36, 40, 38, 42, 40, 45, 44, 48
Offset: 0

Views

Author

Gus Wiseman, Mar 05 2024

Keywords

Examples

			For the partition (10,6,3,2) there are 4 choices: {2,2,2,3}, {2,2,3,3}, {2,2,3,5}, {2,3,3,5} so a(21) >= 4.
For the partitions of 6 we have the following choices:
  (6): {{2},{3}}
  (51): {}
  (42): {{2,2}}
  (411): {}
  (33): {{3,3}}
  (321): {}
  (3111): {}
  (222): {{2,2,2}}
  (2211): {}
  (21111): {}
  (111111): {}
So a(6) = 2.
		

Crossrefs

For just all divisors (not just prime factors) we have A370808.
The version for factorizations is A370817, for all divisors A370816.
A000041 counts integer partitions, strict A000009.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741, A355744, A355745 choose prime factors of prime indices.
A368413 counts non-choosable factorizations, complement A368414.
A370320 counts non-condensed partitions, ranks A355740.
A370592, A370593, A370594, `A370807 count non-choosable partitions.

Programs

  • Mathematica
    Table[Max[Length[Union[Sort /@ Tuples[If[#==1,{},First/@FactorInteger[#]]& /@ #]]]&/@IntegerPartitions[n]],{n,0,30}]

Extensions

Terms a(31) onward from Max Alekseyev, Sep 17 2024

A355537 Number of ways to choose a sequence of prime factors, one of each integer from 2 to n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 8, 8, 16, 32, 32, 32, 64, 64, 128, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 12288, 12288, 12288, 24576, 49152, 98304, 196608, 196608, 393216, 786432, 1572864, 1572864, 4718592, 4718592, 9437184, 18874368, 37748736
Offset: 1

Views

Author

Gus Wiseman, Jul 20 2022

Keywords

Comments

Also partial products of A001221 without the first term 0, sum A013939.
For initial terms up to n = 29 we have a(n) = 2^A355538(n). The first non-power of 2 is a(30) = 12288.

Examples

			The a(n) choices for n = 2, 6, 10, 12, with prime(k) replaced by k:
  (1)  (12131)  (121314121)  (12131412151)
       (12132)  (121314123)  (12131412152)
                (121324121)  (12131412351)
                (121324123)  (12131412352)
                             (12132412151)
                             (12132412152)
                             (12132412351)
                             (12132412352)
		

Crossrefs

The sum of the same integers is A000096.
The product of the same integers is A000142, Heinz number A070826.
The version for divisors instead of prime factors is A066843.
The integers themselves are the rows of A131818.
The version with multiplicity is A327486.
Using prime indices instead of 2..n gives A355741, for multisets A355744.
Counting sequences instead of multisets gives A355746.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    Table[Times@@PrimeNu/@Range[2,m],{m,2,30}]

A370811 Numbers such that more than one set can be obtained by choosing a different divisor of each prime index.

Original entry on oeis.org

3, 5, 7, 11, 13, 14, 15, 17, 19, 21, 23, 26, 29, 31, 33, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 65, 67, 69, 70, 71, 73, 74, 77, 78, 79, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 105, 106, 107, 109, 111, 113, 114, 115, 117, 119
Offset: 1

Views

Author

Gus Wiseman, Mar 13 2024

Keywords

Comments

A prime index of k is a number m such that prime(m) divides k. The multiset of prime indices of k is row k of A112798.

Examples

			The prime indices of 70 are {1,3,4}, with choices (1,3,4) and (1,3,2), so 70 is in the sequence.
The terms together with their prime indices begin:
     3: {2}      43: {14}        79: {22}       115: {3,9}
     5: {3}      46: {1,9}       83: {23}       117: {2,2,6}
     7: {4}      47: {15}        85: {3,7}      119: {4,7}
    11: {5}      49: {4,4}       86: {1,14}     122: {1,18}
    13: {6}      51: {2,7}       87: {2,10}     123: {2,13}
    14: {1,4}    53: {16}        89: {24}       127: {31}
    15: {2,3}    55: {3,5}       91: {4,6}      129: {2,14}
    17: {7}      57: {2,8}       93: {2,11}     130: {1,3,6}
    19: {8}      58: {1,10}      94: {1,15}     131: {32}
    21: {2,4}    59: {17}        95: {3,8}      133: {4,8}
    23: {9}      61: {18}        97: {25}       137: {33}
    26: {1,6}    65: {3,6}      101: {26}       138: {1,2,9}
    29: {10}     67: {19}       103: {27}       139: {34}
    31: {11}     69: {2,9}      105: {2,3,4}    141: {2,15}
    33: {2,5}    70: {1,3,4}    106: {1,16}     142: {1,20}
    35: {3,4}    71: {20}       107: {28}       143: {5,6}
    37: {12}     73: {21}       109: {29}       145: {3,10}
    38: {1,8}    74: {1,12}     111: {2,12}     146: {1,21}
    39: {2,6}    77: {4,5}      113: {30}       149: {35}
    41: {13}     78: {1,2,6}    114: {1,2,8}    151: {36}
		

Crossrefs

For no choices we have A355740, counted by A370320.
For at least one choice we have A368110, counted by A239312.
Partitions of this type are counted by A370803.
For a unique choice we have A370810, counted by A370595 and A370815.
A000005 counts divisors.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741, A355744, A355745 choose prime factors of prime indices.
A370814 counts factorizations with choosable divisors, complement A370813.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Union[Sort /@ Select[Tuples[Divisors/@prix[#]],UnsameQ@@#&]]]>1&]

A355538 Partial sum of A001221 (number of distinct prime factors) minus 1, ranging from 2 to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 6, 6, 7, 8, 9, 9, 10, 10, 11, 11, 12, 12, 14, 14, 14, 15, 16, 17, 18, 18, 19, 20, 21, 21, 23, 23, 24, 25, 26, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 35, 37, 37, 38, 39, 39, 40, 42, 42, 43, 44, 46, 46
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2022

Keywords

Comments

For initial terms up to 30 we have a(n) = Log_2 A355537(n).

Crossrefs

The sum of the same range is A000096.
The product of the same range is A000142, Heinz number A070826.
For divisors (not just prime factors) we get A002541, also A006218, A077597.
A shifted variation is A013939.
The unshifted version is A022559, product A327486, w/o multiplicity A355537.
The ranges themselves are the rows of A131818 (shifted).
Partial sums of A297155 (shifted).
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A066843 gives partial sums of A000005.

Programs

  • Mathematica
    Table[Total[(PrimeNu[#]-1)&/@Range[2,n]],{n,1,100}]

Formula

a(n) = A013939(n) - n + 1.

A370817 Greatest number of multisets that can be obtained by choosing a prime factor of each factor in an integer factorization of n into unordered factors > 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 07 2024

Keywords

Comments

First differs from A096825 at a(210) = 4, A096825(210) = 6.
First differs from A343943 at a(210) = 4, A343943(210) = 6.
First differs from A345926 at a(90) = 4, A345926(90) = 3.

Examples

			For the factorizations of 60 we have the following choices (using prime indices {1,2,3} instead of prime factors {2,3,5}):
  (2*2*3*5): {{1,1,2,3}}
   (2*2*15): {{1,1,2},{1,1,3}}
   (2*3*10): {{1,1,2},{1,2,3}}
    (2*5*6): {{1,1,3},{1,2,3}}
    (3*4*5): {{1,2,3}}
     (2*30): {{1,1},{1,2},{1,3}}
     (3*20): {{1,2},{2,3}}
     (4*15): {{1,2},{1,3}}
     (5*12): {{1,3},{2,3}}
     (6*10): {{1,1},{1,2},{1,3},{2,3}}
       (60): {{1},{2},{3}}
So a(60) = 4.
		

Crossrefs

For all divisors (not just prime factors) we have A370816.
The version for partitions is A370809, for all divisors A370808.
A000005 counts divisors.
A001055 counts factorizations, strict A045778.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 chooses prime factors of prime indices, variations A355744, A355745.
A368413 counts non-choosable factorizations, complement A368414.
A370813 counts non-divisor-choosable factorizations, complement A370814.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Max[Length[Union[Sort/@Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#]]]&/@facs[n]],{n,100}]
Previous Showing 31-40 of 43 results. Next