cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 78 results. Next

A365006 Number of strict integer partitions of n such that no part can be written as a (strictly) positive linear combination of the others.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 4, 4, 8, 4, 11, 9, 16, 14, 25, 20, 37, 31, 49, 47, 73, 64, 101, 96, 135, 133, 190, 181, 256, 253, 336, 342, 453, 452, 596, 609, 771, 803, 1014, 1041, 1309, 1362, 1674, 1760, 2151, 2249, 2736, 2884, 3449, 3661, 4366, 4615, 5486, 5825
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2023

Keywords

Comments

We consider (for example) that 2x + y + 3z is a positive linear combination of (x,y,z), but 2x + y is not, as the coefficient of z is 0.

Examples

			The a(8) = 2 through a(13) = 11 partitions:
  (8)    (9)      (10)       (11)       (12)       (13)
  (5,3)  (5,4)    (6,4)      (6,5)      (7,5)      (7,6)
         (7,2)    (7,3)      (7,4)      (5,4,3)    (8,5)
         (4,3,2)  (4,3,2,1)  (8,3)      (5,4,2,1)  (9,4)
                             (9,2)                 (10,3)
                             (5,4,2)               (11,2)
                             (6,3,2)               (6,4,3)
                             (5,3,2,1)             (6,5,2)
                                                   (7,4,2)
                                                   (5,4,3,1)
                                                   (6,4,2,1)
		

Crossrefs

The nonnegative version for subsets appears to be A124506.
For sums instead of combinations we have A364349, binary A364533.
The nonnegative version is A364350, complement A364839.
For subsets instead of partitions we have A365044, complement A365043.
The non-strict version is A365072, nonnegative A364915.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364912 counts linear combinations of partitions of k.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Table[combp[#[[k]],Delete[#,k]]=={},{k,Length[#]}]&]],{n,0,30}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365006(n):
        if n <= 1: return 1
        alist = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)]
        c = 1
        for p in partitions(n,k=n-1):
            if max(p.values()) == 1:
                s = set(p)
                for q in s:
                    if tuple(sorted(s-{q})) in alist[q]:
                        break
                else:
                    c += 1
        return c # Chai Wah Wu, Sep 20 2023

Extensions

a(31)-a(56) from Chai Wah Wu, Sep 20 2023

A365044 Number of subsets of {1..n} whose greatest element cannot be written as a (strictly) positive linear combination of the others.

Original entry on oeis.org

1, 2, 3, 5, 9, 20, 43, 96, 207, 442, 925, 1913, 3911, 7947, 16061, 32350, 64995, 130384, 261271, 523194, 1047208, 2095459, 4192212, 8386044, 16774078, 33550622, 67104244, 134212163, 268428760, 536862900, 1073732255, 2147472267, 4294953778, 8589918612, 17179850312
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2023

Keywords

Comments

Sets of this type may be called "positive combination-free".
Also subsets of {1..n} such that no element can be written as a (strictly) positive linear combination of the others.

Examples

			The subset S = {3,5,6,8} has 6 = 2*3 + 0*5 + 0*8 and 8 = 1*3 + 1*5 + 0*6 but neither of these is strictly positive, so S is counted under a(8).
The a(0) = 1 through a(5) = 20 subsets:
  {}  {}   {}   {}     {}         {}
      {1}  {1}  {1}    {1}        {1}
           {2}  {2}    {2}        {2}
                {3}    {3}        {3}
                {2,3}  {4}        {4}
                       {2,3}      {5}
                       {3,4}      {2,3}
                       {2,3,4}    {2,5}
                       {1,2,3,4}  {3,4}
                                  {3,5}
                                  {4,5}
                                  {2,3,4}
                                  {2,4,5}
                                  {3,4,5}
                                  {1,2,3,4}
                                  {1,2,3,5}
                                  {1,2,4,5}
                                  {1,3,4,5}
                                  {2,3,4,5}
                                  {1,2,3,4,5}
		

Crossrefs

The binary version is A007865, first differences A288728.
The binary complement is A093971, first differences A365070.
Without re-usable parts we have A151897, first differences A365071.
The nonnegative version is A326083, first differences A124506.
A subclass is A341507.
The nonnegative complement is A364914, first differences A365046.
The complement is counted by A365043, first differences A365042.
First differences are A365045.
A085489 and A364755 count subsets w/o the sum of two distinct elements.
A088809 and A364756 count subsets with the sum of two distinct elements.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],And@@Table[combp[Last[#],Union[Most[#]]]=={},{k,Length[#]}]&]],{n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A365044(n):
        mlist = tuple({tuple(sorted(p.keys())) for p in partitions(m,k=m-1)} for m in range(1,n+1))
        return n+1+sum(1 for k in range(2,n+1) for w in combinations(range(1,n+1),k) if w[:-1] not in mlist[w[-1]-1]) # Chai Wah Wu, Nov 20 2023

Formula

a(n) = 2^n - A365043(n).

Extensions

a(15)-a(34) from Chai Wah Wu, Nov 20 2023

A365662 Number of ordered pairs of disjoint strict integer partitions of n.

Original entry on oeis.org

1, 0, 0, 2, 2, 6, 8, 14, 18, 32, 42, 66, 92, 136, 190, 280, 374, 532, 744, 1014, 1366, 1896, 2512, 3384, 4526, 6006, 7910, 10496, 13648, 17842, 23338, 30116, 38826, 50256, 64298, 82258, 105156, 133480, 169392, 214778, 270620, 340554, 428772, 536302, 670522
Offset: 0

Views

Author

Gus Wiseman, Sep 19 2023

Keywords

Comments

Also the number of ways to first choose a strict partition of 2n, then a subset of it summing to n.

Examples

			The a(0) = 1 through a(7) = 14 pairs:
  ()()  .  .  (21)(3)  (31)(4)  (32)(5)   (42)(6)   (43)(7)
              (3)(21)  (4)(31)  (41)(5)   (51)(6)   (52)(7)
                                (5)(32)   (6)(42)   (61)(7)
                                (5)(41)   (6)(51)   (7)(43)
                                (32)(41)  (321)(6)  (7)(52)
                                (41)(32)  (42)(51)  (7)(61)
                                          (51)(42)  (421)(7)
                                          (6)(321)  (43)(52)
                                                    (43)(61)
                                                    (52)(43)
                                                    (52)(61)
                                                    (61)(43)
                                                    (61)(52)
                                                    (7)(421)
		

Crossrefs

For subsets instead of partitions we have A000244, non-disjoint A000302.
If the partitions can have different sums we get A032302.
The non-strict version is A054440, non-disjoint A001255.
The unordered version is A108796, non-strict A260669.
A000041 counts integer partitions, strict A000009.
A000124 counts distinct possible sums of subsets of {1..n}.
A000712 counts distinct submultisets of partitions.
A002219 and A237258 count partitions of 2n including a partition of n.
A304792 counts subset-sums of partitions, positive A276024, strict A284640.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Mathematica
    Table[Length[Select[Tuples[Select[IntegerPartitions[n], UnsameQ@@#&],2], Intersection@@#=={}&]], {n,0,15}]
    Table[SeriesCoefficient[Product[(1 + x^k + y^k), {k, 1, n}], {x, 0, n}, {y, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Apr 24 2025 *)

Formula

a(n) = 2*A108796(n) for n > 1.
a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k + y^k). - Ilya Gutkovskiy, Apr 24 2025

A367404 Triangle read by rows where T(n,k) is the number of integer partitions of n with a semi-sum k.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 2, 2, 2, 5, 3, 4, 2, 3, 7, 5, 6, 4, 3, 3, 11, 7, 9, 6, 6, 3, 4, 15, 11, 13, 10, 9, 6, 4, 4, 22, 15, 20, 13, 15, 9, 8, 4, 5, 30, 22, 27, 21, 21, 15, 12, 8, 5, 5, 42, 30, 39, 28, 30, 21, 20, 12, 10, 5, 6, 56, 42, 53, 41, 42, 33, 28, 20, 15, 10, 6, 6
Offset: 2

Views

Author

Gus Wiseman, Nov 17 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partition y = (3,2,1,1) has semi-sum 3 = 2+1, but no semi-sum 6, so y is counted under T(7,3) but not under T(7,6).
Triangle begins:
   1
   1   1
   2   1   2
   3   2   2   2
   5   3   4   2   3
   7   5   6   4   3   3
  11   7   9   6   6   3   4
  15  11  13  10   9   6   4   4
  22  15  20  13  15   9   8   4   5
  30  22  27  21  21  15  12   8   5   5
  42  30  39  28  30  21  20  12  10   5   6
  56  42  53  41  42  33  28  20  15  10   6   6
  77  56  73  55  60  42  44  28  25  15  12   6   7
Row n = 7 counts the following partitions:
  (511)      (421)     (331)    (421)   (511)  (61)
  (4111)     (3211)    (322)    (4111)  (421)  (52)
  (3211)     (2221)    (3211)   (322)   (331)  (43)
  (31111)    (22111)   (31111)  (3211)
  (22111)    (211111)  (2221)
  (211111)             (22111)
  (1111111)
		

Crossrefs

Column k = 0 is A000041.
Column n = k is A004526.
The complement for all submultisets is A046663, strict A365663.
For subsets instead of partitions we have A365541, non-binary A365381.
The non-binary version is A365543, strict A365661.
Row sums are A366738.
The strict case is A367405.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], MemberQ[Total/@Subsets[#, {2}],k]&]], {n,2,10}, {k,2,n}]

A367405 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with two distinct parts summing to k.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 1, 1, 1, 2, 1, 0, 1, 1, 3, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 4, 2, 2, 3, 2, 3, 3, 3, 3, 5, 3, 2, 4, 3, 4, 4, 5, 3, 4, 5, 3, 3, 5, 4, 4, 5, 5, 5, 4, 4, 6, 4, 3, 6, 5, 6, 5, 7, 5, 7, 4, 5, 6, 5, 5, 7, 7, 8, 7, 8, 8, 7, 7, 5, 5, 7
Offset: 3

Views

Author

Gus Wiseman, Nov 18 2023

Keywords

Examples

			Triangle begins:
  1
  0  1
  0  0  2
  1  1  1  2
  1  0  1  1  3
  1  1  1  1  2  3
  1  1  1  2  2  2  4
  2  2  3  2  3  2  3  4
  2  2  3  2  3  3  3  3  5
  3  2  4  3  4  4  5  3  4  5
  3  3  5  4  4  5  5  5  4  4  6
  4  3  6  5  6  5  7  5  7  4  5  6
  5  5  7  7  8  7  8  8  7  7  5  5  7
  6  5  9  8 10  7 10  9 10  7  9  5  6  7
  7  7 10 10 12 11 11 11 12 10  9  9  6  6  8
  9  7 13 11 15 12 13 13 15 13 13  9 11  6  7  8
Row n = 9 counts the following strict partitions:
  (6,2,1)  (5,3,1)  (4,3,2)  (5,3,1)  (6,2,1)  (6,2,1)  (8,1)
                             (4,3,2)  (4,3,2)  (5,3,1)  (7,2)
                                                        (6,3)
                                                        (5,4)
Row n = 13 counts the following strict partitions (A=10, B=11, C=12):
  A21   931   841   751   652   751   841   931   A21  A21  C1
  7321  7321  832   742   643   7321  742   832   832  931  B2
  6421  5431  7321  6421  6421  652   7321  7321  742  841  A3
              6421  5431  5431  6421  643   643   652  751  94
              5431              5431  5431  6421            85
                                                            76
		

Crossrefs

Column n = k is A004526.
Column k = 3 is A025148.
For subsets instead of partitions we have A365541, non-binary A365381.
The non-binary version is A365661, non-strict A365543.
The non-binary complement is A365663, non-strict A046663.
Row sums are A366741, non-strict A366738.
The non-strict version is A367404.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#,{2}], k]&]], {n,3,10}, {k,3,n}]

A365042 Number of subsets of {1..n} containing n such that some element can be written as a positive linear combination of the others.

Original entry on oeis.org

0, 0, 1, 2, 4, 5, 9, 11, 17, 21, 29, 36, 50, 60, 78, 95, 123, 147, 185, 221, 274, 325, 399, 472, 574, 672, 810, 945, 1131, 1316, 1557, 1812, 2137, 2462, 2892, 3322, 3881, 4460, 5176, 5916, 6846, 7817, 8993, 10250, 11765, 13333, 15280, 17308, 19731, 22306
Offset: 0

Views

Author

Gus Wiseman, Aug 23 2023

Keywords

Comments

Sets of this type may be called "positive combination-full".
Also subsets of {1..n} containing n whose greatest element can be written as a positive linear combination of the others.

Examples

			The subset {3,4,10} has 10 = 2*3 + 1*4 so is counted under a(10).
The a(0) = 0 through a(7) = 11 subsets:
  .  .  {1,2}  {1,3}    {1,4}    {1,5}    {1,6}      {1,7}
               {1,2,3}  {2,4}    {1,2,5}  {2,6}      {1,2,7}
                        {1,2,4}  {1,3,5}  {3,6}      {1,3,7}
                        {1,3,4}  {1,4,5}  {1,2,6}    {1,4,7}
                                 {2,3,5}  {1,3,6}    {1,5,7}
                                          {1,4,6}    {1,6,7}
                                          {1,5,6}    {2,3,7}
                                          {2,4,6}    {2,5,7}
                                          {1,2,3,6}  {3,4,7}
                                                     {1,2,3,7}
                                                     {1,2,4,7}
		

Crossrefs

The nonnegative complement is A124506, first differences of A326083.
The binary complement is A288728, first differences of A007865.
First differences of A365043.
The complement is counted by A365045, first differences of A365044.
The nonnegative version is A365046, first differences of A364914.
Without re-usable parts we have A365069, first differences of A364534.
The binary version is A365070, first differences of A093971.
A085489 and A364755 count subsets with no sum of two distinct elements.
A088314 counts sets that can be linearly combined to obtain n.
A088809 and A364756 count subsets with some sum of two distinct elements.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Or@@Table[combp[#[[k]],Union[Delete[#,k]]]!={},{k,Length[#]}]&]],{n,0,10}]

Formula

a(n) = A088314(n) - 1.

A367395 Number of strict integer partitions of n whose length is the sum of two distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 5, 5, 7, 8, 11, 13, 17, 19, 25, 28, 35, 41, 49, 57, 68, 78, 92, 107, 124, 143, 166, 192, 220, 254, 291, 335, 382, 439, 499, 572, 649, 741, 840, 956, 1080, 1226, 1383, 1566, 1762, 1988, 2235, 2515, 2822, 3166, 3547
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2023

Keywords

Examples

			The strict partition (5,3,2,1) has 4 = 3 + 1 so is counted under a(11).
The a(6) = 1 through a(17) = 7 strict partitions (A..E = 10..14):
  321  421  521  621  721   821   921   A21   B21   C21    D21    E21
                      4321  5321  6321  5431  6431  6531   7531   7631
                                        7321  8321  7431   8431   8531
                                                    9321   A321   9431
                                                    54321  64321  B321
                                                                  65321
                                                                  74321
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A088809/A093971 count twofold sum-full subsets.
A236912 counts partitions containing no semi-sum, ranks A364461.
A237113 counts partitions containing a semi-sum, ranks A364462.
A237668 counts sum-full partitions, sum-free A237667.
A366738 counts semi-sums of partitions, strict A366741.
Triangles:
A008284 counts partitions by length, strict A008289.
A365541 counts subsets with a semi-sum k.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#,{2}], Length[#]]&]], {n,0,30}]

A367396 Number of subsets of {1..n} whose cardinality is the sum of two distinct elements.

Original entry on oeis.org

0, 0, 0, 1, 3, 7, 17, 40, 90, 199, 435, 939, 2007, 4258, 8976, 18817, 39263, 81595, 168969, 348820, 718134, 1474863, 3022407, 6181687, 12621135, 25727686, 52369508, 106460521, 216162987, 438431215, 888359841, 1798371648, 3637518354, 7351824439, 14848255803
Offset: 0

Views

Author

Gus Wiseman, Nov 21 2023

Keywords

Examples

			The set s = {1,2,3,6,7,8} has the following sums of pairs of distinct elements: {3,4,5,7,8,9,10,11,13,14,15}. This does not include 6, so s is not counted under a(8).
The a(0) = 0 through a(6) = 17 subsets:
  .  .  .  {1,2,3}  {1,2,3}    {1,2,3}      {1,2,3}
                    {1,2,4}    {1,2,4}      {1,2,4}
                    {1,2,3,4}  {1,2,5}      {1,2,5}
                               {1,2,3,4}    {1,2,6}
                               {1,2,3,5}    {1,2,3,4}
                               {1,3,4,5}    {1,2,3,5}
                               {1,2,3,4,5}  {1,2,3,6}
                                            {1,3,4,5}
                                            {1,3,4,6}
                                            {1,3,5,6}
                                            {1,2,3,4,5}
                                            {1,2,3,4,6}
                                            {1,2,3,5,6}
                                            {1,2,4,5,6}
                                            {1,3,4,5,6}
                                            {2,3,4,5,6}
                                            {1,2,3,4,5,6}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A002865 counts partitions whose length is a part, complement A229816.
A364534 counts sum-full subsets.
A088809 and A093971 count subsets containing semi-sums.
A366738 counts semi-sums of partitions, strict A366741.
Triangles:
A365381 counts subsets with a subset summing to k, complement A366320.
A365541 counts subsets with a semi-sum k.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#,{2}],Length[#]]&]],{n,0,10}]
  • Python
    from itertools import combinations
    def A367396(n): return sum(1 for k in range(3,n+1) for w in (set(d) for d in combinations(range(1,n+1),k)) if any({a,k-a}<=w for a in range(1,k+1>>1))) # Chai Wah Wu, Nov 21 2023

Formula

Conjectures from Chai Wah Wu, Nov 21 2023: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 4*a(n-3) - 5*a(n-4) + 2*a(n-5) for n > 4.
G.f.: x^3*(x - 1)/((2*x - 1)*(x^4 - 2*x^3 + x^2 - 2*x + 1)). (End)

Extensions

a(18)-a(33) from Chai Wah Wu, Nov 21 2023
a(34) from Paul Muljadi, Nov 24 2023

A367397 Numbers m such that bigomega(m) is the sum of prime indices of some semiprime divisor of m.

Original entry on oeis.org

4, 12, 18, 30, 36, 40, 42, 54, 60, 66, 78, 81, 90, 100, 102, 112, 114, 120, 126, 135, 138, 140, 150, 168, 174, 180, 186, 189, 198, 210, 220, 222, 225, 234, 246, 250, 252, 258, 260, 270, 280, 282, 297, 300, 306, 315, 318, 330, 336, 340, 342, 350, 351, 352, 354
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of the partitions counted by A367394.

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A325761 ranks partitions whose length is a part, counted by A002865.
A088809 and A093971 count subsets containing semi-sums.
A236912 counts partitions with no semi-sum of the parts, ranks A364461.
A237113 counts partitions with a semi-sum of the parts, ranks A364462.
A304792 counts subset-sums of partitions, strict A365925.
A366738 counts semi-sums of partitions, strict A366741.
Triangles:
A365381 counts subsets with a subset summing to k, complement A366320.
A365541 counts subsets with a semi-sum k.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],MemberQ[Total/@Subsets[prix[#],{2}],PrimeOmega[#]]&]

A367398 Number of integer partitions of n whose length is not a semi-sum of the parts.

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 8, 12, 16, 23, 28, 41, 52, 71, 89, 122, 151, 200, 246, 321, 398, 510, 620, 794, 968, 1212, 1474, 1837, 2219, 2748, 3302, 4055, 4882, 5942, 7094, 8623, 10275, 12376, 14721, 17661, 20920, 25011, 29516, 35120, 41419, 49053, 57609, 68092, 79780
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			For the partition y = (4,3,1) we have semi-sums {4,5,7}, which do not include 3 (the length of y), so y is counted under a(8).
The a(1) = 1 through a(8) = 16 partitions:
  (1)  (2)  (3)    (4)     (5)      (6)       (7)        (8)
            (21)   (22)    (32)     (33)      (43)       (44)
            (111)  (31)    (41)     (42)      (52)       (53)
                   (1111)  (311)    (51)      (61)       (62)
                           (2111)   (222)     (322)      (71)
                           (11111)  (411)     (331)      (332)
                                    (21111)   (511)      (422)
                                    (111111)  (4111)     (431)
                                              (22111)    (611)
                                              (31111)    (4211)
                                              (211111)   (5111)
                                              (1111111)  (22211)
                                                         (221111)
                                                         (311111)
                                                         (2111111)
                                                         (11111111)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A236912 counts partitions containing no semi-sum, ranks A364461.
A237113 counts partitions containing a semi-sum, ranks A364462.
A237667 counts sum-free partitions, sum-full A237668.
A366738 counts semi-sums of partitions, strict A366741.
A367402 counts partitions with covering semi-sums, complement A367403.
Triangles:
A008284 counts partitions by length, strict A008289.
A365541 counts subsets with a semi-sum k.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[Total/@Subsets[#,{2}],Length[#]]&]],{n,0,10}]
Previous Showing 51-60 of 78 results. Next