cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 50 results. Next

A367216 Number of subsets of {1..n} whose cardinality is equal to the sum of some subset.

Original entry on oeis.org

1, 2, 3, 5, 10, 20, 40, 82, 169, 348, 716, 1471, 3016, 6171, 12605, 25710, 52370, 106539, 216470, 439310, 890550, 1803415, 3648557, 7375141, 14896184, 30065129, 60639954, 122231740, 246239551, 495790161, 997747182, 2006969629, 4035274292, 8110185100, 16293958314, 32724456982
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Examples

			The a(0) = 1 through a(4) = 10 subsets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {1,2}  {1,2}    {1,2}
                  {2,3}    {2,3}
                  {1,2,3}  {2,4}
                           {1,2,3}
                           {1,2,4}
                           {1,3,4}
                           {2,3,4}
                           {1,2,3,4}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A002865 counts partitions whose length is a part, complement A229816.
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A237668 counts sum-full partitions, ranks A364532.
A240855 counts strict partitions whose length is a part, complement A240861.
A364272 counts sum-full strict partitions, sum-free A364349.
A365046 counts combination-full subsets, differences of A364914.
Triangles:
A365381 counts sets with a subset summing to k, without A366320.
A365541 counts sets containing two distinct elements summing to k.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}]

Formula

a(n) = 2^n - A367217(n). - Chai Wah Wu, Nov 14 2023

Extensions

a(16)-a(28) from Chai Wah Wu, Nov 14 2023
a(29)-a(35) from Max Alekseyev, Feb 25 2025

A367218 Number of integer partitions of n whose length can be written as a nonnegative linear combination of the distinct parts.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 8, 13, 18, 26, 35, 50, 66, 92, 119, 160, 208, 275, 350, 457, 579, 742, 933, 1185, 1476, 1859, 2300, 2868, 3531, 4371, 5343, 6575, 8003, 9776, 11842, 14394, 17351, 20987, 25191, 30315, 36257, 43448, 51753, 61776, 73342, 87192, 103184, 122253, 144211
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Comments

The Heinz numbers of these partitions are given by A367226.

Examples

			The partition (4,2,1) has 3 = (2)+(1) or 3 = (1+1+1) so is counted under a(7).
The a(1) = 1 through a(7) = 13 partitions:
  (1)  (11)  (21)   (22)    (32)     (42)      (52)
             (111)  (31)    (41)     (51)      (61)
                    (211)   (221)    (321)     (322)
                    (1111)  (311)    (411)     (331)
                            (2111)   (2211)    (421)
                            (11111)  (3111)    (511)
                                     (21111)   (2221)
                                     (111111)  (3211)
                                               (4111)
                                               (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A008284 counts partitions by length, strict A008289.
A240855 counts strict partitions whose length is a part, complement A240861.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], combs[Length[#], Union[#]]!={}&]], {n,0,15}]

Extensions

a(31)-a(48) from Chai Wah Wu, Nov 15 2023

A367219 Number of integer partitions of n whose length cannot be written as a nonnegative linear combination of the distinct parts.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 3, 2, 4, 4, 7, 6, 11, 9, 16, 16, 23, 22, 35, 33, 48, 50, 69, 70, 99, 99, 136, 142, 187, 194, 261, 267, 346, 367, 468, 489, 626, 650, 824, 870, 1081, 1135, 1421, 1485, 1833, 1942, 2374, 2501, 3062, 3220, 3915, 4145, 4987, 5274, 6363, 6709, 8027
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Examples

			3 cannot be written as a nonnegative linear combination of 2 and 5, so (5,2,2) is counted under a(9).
The a(2) = 1 through a(10) = 7 partitions:
  (2)  (3)  (4)  (5)  (6)      (7)    (8)      (9)      (10)
                      (3,3)    (4,3)  (4,4)    (5,4)    (5,5)
                      (2,2,2)         (5,3)    (6,3)    (6,4)
                                      (4,2,2)  (5,2,2)  (7,3)
                                                        (4,4,2)
                                                        (6,2,2)
                                                        (2,2,2,2,2)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A008284 counts partitions by length, strict A008289.
A124506 appears to count combination-free subsets, differences of A326083.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n],combs[Length[#],Union[#]]=={}&]],{n,0,15}]

Extensions

a(31)-a(56) from Chai Wah Wu, Nov 15 2023

A367220 Number of strict integer partitions of n whose length (number of parts) can be written as a nonnegative linear combination of the parts.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 3, 3, 4, 5, 7, 7, 10, 11, 15, 17, 22, 25, 32, 37, 46, 53, 65, 75, 90, 105, 124, 143, 168, 193, 224, 258, 297, 340, 390, 446, 509, 580, 660, 751, 852, 967, 1095, 1240, 1401, 1584, 1786, 2015, 2269, 2554, 2869, 3226, 3617, 4056, 4541, 5084
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Comments

The non-strict version is A367218.

Examples

			The a(3) = 1 through a(10) = 7 strict partitions:
  (2,1)  (3,1)  (3,2)  (4,2)    (5,2)    (6,2)    (7,2)    (8,2)
                (4,1)  (5,1)    (6,1)    (7,1)    (8,1)    (9,1)
                       (3,2,1)  (4,2,1)  (4,3,1)  (4,3,2)  (5,3,2)
                                         (5,2,1)  (5,3,1)  (5,4,1)
                                                  (6,2,1)  (6,3,1)
                                                           (7,2,1)
                                                           (4,3,2,1)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A364272 counts sum-full strict partitions, sum-free A364349.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&combs[Length[#], Union[#]]!={}&]], {n,0,15}]

A367222 Number of subsets of {1..n} whose cardinality can be written as a nonnegative linear combination of the elements.

Original entry on oeis.org

1, 2, 3, 6, 12, 24, 49, 101, 207, 422, 859, 1747, 3548, 7194, 14565, 29452, 59496, 120086, 242185, 488035, 982672, 1977166, 3975508, 7989147, 16047464, 32221270, 64674453, 129775774, 260337978, 522124197, 1046911594, 2098709858, 4206361369, 8429033614, 16887728757, 33829251009, 67755866536, 135687781793, 271693909435
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Examples

			The set {1,2,4} has 3 = (2)+(1) or 3 = (1+1+1) so is counted under a(4).
The a(0) = 1 through a(4) = 12 subsets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {1,2}  {1,2}    {1,2}
                  {1,3}    {1,3}
                  {2,3}    {1,4}
                  {1,2,3}  {2,3}
                           {2,4}
                           {1,2,3}
                           {1,2,4}
                           {1,3,4}
                           {2,3,4}
                           {1,2,3,4}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A002865 counts partitions whose length is a part, complement A229816.
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A326020 counts complete subsets.
A365046 counts combination-full subsets, differences of A364914.
Triangles:
A008284 counts partitions by length, strict A008289.
A365381 counts sets with a subset summing to k, without A366320.
A365541 counts subsets containing two distinct elements summing to k.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]], combs[Length[#], Union[#]]!={}&]], {n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A367222(n):
        c, mlist = 1, []
        for m in range(1,n+1):
            t = set()
            for p in partitions(m):
                t.add(tuple(sorted(p.keys())))
            mlist.append([set(d) for d in t])
        for k in range(1,n+1):
            for w in combinations(range(1,n+1),k):
                ws = set(w)
                for s in mlist[k-1]:
                    if s <= ws:
                        c += 1
                        break
        return c # Chai Wah Wu, Nov 16 2023

Formula

a(n) = 2^n - A367223(n).

Extensions

a(13)-a(33) from Chai Wah Wu, Nov 15 2023
a(34)-a(38) from Max Alekseyev, Feb 25 2025

A367223 Number of subsets of {1..n} whose cardinality cannot be written as a nonnegative linear combination of the elements.

Original entry on oeis.org

0, 0, 1, 2, 4, 8, 15, 27, 49, 90, 165, 301, 548, 998, 1819, 3316, 6040, 10986, 19959, 36253, 65904, 119986, 218796, 399461, 729752, 1333162, 2434411, 4441954, 8097478, 14746715, 26830230, 48773790, 88605927, 160900978, 292140427, 530487359, 963610200, 1751171679, 3183997509
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Examples

			3 cannot be written as a nonnegative linear combination of 2, 4, and 5, so {2,4,5} is counted under a(6).
The a(2) = 1 through a(6) = 15 subsets:
  {2}  {2}  {2}    {2}      {2}
       {3}  {3}    {3}      {3}
            {4}    {4}      {4}
            {3,4}  {5}      {5}
                   {3,4}    {6}
                   {3,5}    {3,4}
                   {4,5}    {3,5}
                   {2,4,5}  {3,6}
                            {4,5}
                            {4,6}
                            {5,6}
                            {2,4,5}
                            {2,4,6}
                            {2,5,6}
                            {4,5,6}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A365046 counts combination-full subsets, differences of A364914.
Triangles:
A116861 counts positive linear combinations of strict partitions of k.
A364916 counts linear combinations of strict partitions of k.
A366320 counts subsets without a subset summing to k, with A365381.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]], combs[Length[#],Union[#]]=={}&]], {n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A367223(n):
        c, mlist = 0, []
        for m in range(1,n+1):
            t = set()
            for p in partitions(m):
                t.add(tuple(sorted(p.keys())))
            mlist.append([set(d) for d in t])
        for k in range(1,n+1):
            for w in combinations(range(1,n+1),k):
                ws = set(w)
                for s in mlist[k-1]:
                    if s <= ws:
                        break
                else:
                    c += 1
        return c # Chai Wah Wu, Nov 16 2023

Formula

a(n) = 2^n - A367222(n).

Extensions

a(14)-a(33) from Chai Wah Wu, Nov 15 2023
a(34)-a(38) from Max Alekseyev, Feb 25 2025

A367226 Numbers m whose prime indices have a nonnegative linear combination equal to bigomega(m).

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32, 33, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 56, 57, 58, 60, 62, 64, 66, 68, 69, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 87, 88, 90, 92, 93, 94, 96, 98, 100, 102, 104
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of the partitions counted by A367218.

Examples

			The prime indices of 24 are {1,1,1,2} with (1+1+1+1) = 4 or (1+1)+(2) = 4 or (2+2) = 4, so 24 is in the sequence.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   12: {1,1,2}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   24: {1,1,1,2}
   26: {1,6}
   28: {1,1,4}
   30: {1,2,3}
   32: {1,1,1,1,1}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000700 counts self-conjugate partitions, ranks A088902.
A002865 counts partitions whose length is a part, ranks A325761.
A005117 ranks strict partitions, counted by A000009.
A046663 counts partitions of n without a subset-sum k, strict A365663.
A066208 ranks partitions into odd parts, counted by A000009.
A088809/A093971/A364534 count certain types of sum-full subsets.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A126796 counts complete partitions, ranks A325781.
A237668 counts sum-full partitions, ranks A364532.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Select[Range[100], combs[PrimeOmega[#], Union[prix[#]]]!={}&]

A367227 Numbers m whose prime indices have no nonnegative linear combination equal to bigomega(m).

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 25, 27, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 63, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 99, 101, 103, 107, 109, 113, 115, 117, 119, 121, 127, 131, 133, 137, 139, 143, 145, 147, 149, 151, 153, 155, 157, 161, 163
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of the partitions counted by A367219.

Examples

			The prime indices of 24 are {1,1,1,2} with (1+1+1+1) = 4 or (1+1)+(2) = 4 or (2+2) = 4, so 24 is not in the sequence.
The terms together with their prime indices begin:
     3: {2}        43: {14}        85: {3,7}
     5: {3}        47: {15}        89: {24}
     7: {4}        49: {4,4}       91: {4,6}
    11: {5}        53: {16}        95: {3,8}
    13: {6}        55: {3,5}       97: {25}
    17: {7}        59: {17}        99: {2,2,5}
    19: {8}        61: {18}       101: {26}
    23: {9}        63: {2,2,4}    103: {27}
    25: {3,3}      65: {3,6}      107: {28}
    27: {2,2,2}    67: {19}       109: {29}
    29: {10}       71: {20}       113: {30}
    31: {11}       73: {21}       115: {3,9}
    35: {3,4}      77: {4,5}      117: {2,2,6}
    37: {12}       79: {22}       119: {4,7}
    41: {13}       83: {23}       121: {5,5}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000700 counts self-conjugate partitions, ranks A088902.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124506 appears to count combination-free subsets, differences of A326083.
A229816 counts partitions whose length is not a part, ranks A367107.
A304792 counts subset-sums of partitions, strict A365925.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p], {k}]]]];
    combs[n_,y_]:=With[{s=Table[{k,i}, {k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Select[Range[100], combs[PrimeOmega[#], Union[prix[#]]]=={}&]

A364915 Number of integer partitions of n such that no distinct part can be written as a nonnegative linear combination of other distinct parts.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 12, 10, 16, 16, 19, 21, 29, 25, 37, 35, 44, 46, 60, 55, 75, 71, 90, 90, 114, 110, 140, 138, 167, 163, 217, 201, 248, 241, 298, 303, 359, 355, 425, 422, 520, 496, 594, 603, 715, 706, 834, 826, 968, 972, 1153, 1147, 1334, 1315, 1530
Offset: 0

Views

Author

Gus Wiseman, Aug 22 2023

Keywords

Examples

			The a(1) = 1 through a(10) = 8 partitions (A=10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    32     33      43       44        54         55
              1111  11111  222     52       53        72         64
                           111111  322      332       333        73
                                   1111111  2222      522        433
                                            11111111  3222       3322
                                                      111111111  22222
                                                                 1111111111
The partition (5,4,3) has no part that can be written as a nonnegative linear combination of the others, so is counted under a(12).
The partition (6,4,3,2) has 6=4+2, or 6=3+3, or 6=2+2+2, or 4=2+2, so is not counted under a(15).
		

Crossrefs

For sums instead of combinations we have A237667, binary A236912.
For subsets instead of partitions we have A326083, complement A364914.
The strict case is A364350.
The complement is A365068, strict A364839.
The positive case is A365072, strict A365006.
A000041 counts integer partitions, strict A000009.
A007865 counts binary sum-free sets w/ re-usable parts, complement A093971.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364912 counts linear combinations of partitions of k.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], Function[ptn,!Or@@Table[combs[ptn[[k]],Delete[ptn,k]]!={}, {k,Length[ptn]}]]@*Union]], {n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    def A364915(n):
        if n <= 1: return 1
        alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 1
        for p in partitions(n,k=n-1):
            s = set(p)
            if not any(set(t).issubset(s-{q}) for q in s for t in alist[q]):
                c += 1
        return c # Chai Wah Wu, Sep 23 2023

Formula

a(n) = A000041(n) - A365068(n).

Extensions

a(37)-a(59) from Chai Wah Wu, Sep 25 2023

A365376 Number of subsets of {1..n} with a subset summing to n.

Original entry on oeis.org

1, 1, 2, 5, 10, 23, 47, 102, 207, 440, 890, 1847, 3730, 7648, 15400, 31332, 62922, 127234, 255374, 514269, 1030809, 2071344, 4148707, 8321937, 16660755, 33384685, 66812942, 133789638, 267685113, 535784667, 1071878216, 2144762139, 4290261840, 8583175092, 17168208940, 34342860713
Offset: 0

Views

Author

Gus Wiseman, Sep 08 2023

Keywords

Examples

			The a(1) = 1 through a(4) = 10 sets:
  {1}  {2}    {3}      {4}
       {1,2}  {1,2}    {1,3}
              {1,3}    {1,4}
              {2,3}    {2,4}
              {1,2,3}  {3,4}
                       {1,2,3}
                       {1,2,4}
                       {1,3,4}
                       {2,3,4}
                       {1,2,3,4}
		

Crossrefs

The case containing n is counted by A131577.
The version with re-usable parts is A365073.
The complement is counted by A365377.
The complement w/ re-usable parts is A365380.
Main diagonal of A365381.
A000009 counts sets summing to n, multisets A000041.
A000124 counts distinct possible sums of subsets of {1..n}.
A124506 appears to count combination-free subsets, differences of A326083.
A364350 counts combination-free strict partitions, complement A364839.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#],n]&]],{n,0,10}]
  • PARI
    isok(s, n) = forsubset(#s, ss, if (vecsum(vector(#ss, k, s[ss[k]])) == n, return(1)));
    a(n) = my(nb=0); forsubset(n, s, if (isok(s, n), nb++)); nb; \\ Michel Marcus, Sep 09 2023
    
  • Python
    from itertools import combinations, chain
    from sympy.utilities.iterables import partitions
    def A365376(n):
        if n == 0: return 1
        nset = set(range(1,n+1))
        s, c = [set(p) for p in partitions(n,m=n,k=n) if max(p.values(),default=1) == 1], 1
        for a in chain.from_iterable(combinations(nset,m) for m in range(2,n+1)):
            if sum(a) >= n:
                aset = set(a)
                for p in s:
                    if p.issubset(aset):
                        c += 1
                        break
        return c # Chai Wah Wu, Sep 09 2023

Formula

a(n) = 2^n-A365377(n). - Chai Wah Wu, Sep 09 2023

Extensions

a(16)-a(25) from Michel Marcus, Sep 09 2023
a(26)-a(32) from Chai Wah Wu, Sep 09 2023
a(33)-a(35) from Chai Wah Wu, Sep 10 2023
Previous Showing 11-20 of 50 results. Next