cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A367404 Triangle read by rows where T(n,k) is the number of integer partitions of n with a semi-sum k.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 2, 2, 2, 5, 3, 4, 2, 3, 7, 5, 6, 4, 3, 3, 11, 7, 9, 6, 6, 3, 4, 15, 11, 13, 10, 9, 6, 4, 4, 22, 15, 20, 13, 15, 9, 8, 4, 5, 30, 22, 27, 21, 21, 15, 12, 8, 5, 5, 42, 30, 39, 28, 30, 21, 20, 12, 10, 5, 6, 56, 42, 53, 41, 42, 33, 28, 20, 15, 10, 6, 6
Offset: 2

Views

Author

Gus Wiseman, Nov 17 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partition y = (3,2,1,1) has semi-sum 3 = 2+1, but no semi-sum 6, so y is counted under T(7,3) but not under T(7,6).
Triangle begins:
   1
   1   1
   2   1   2
   3   2   2   2
   5   3   4   2   3
   7   5   6   4   3   3
  11   7   9   6   6   3   4
  15  11  13  10   9   6   4   4
  22  15  20  13  15   9   8   4   5
  30  22  27  21  21  15  12   8   5   5
  42  30  39  28  30  21  20  12  10   5   6
  56  42  53  41  42  33  28  20  15  10   6   6
  77  56  73  55  60  42  44  28  25  15  12   6   7
Row n = 7 counts the following partitions:
  (511)      (421)     (331)    (421)   (511)  (61)
  (4111)     (3211)    (322)    (4111)  (421)  (52)
  (3211)     (2221)    (3211)   (322)   (331)  (43)
  (31111)    (22111)   (31111)  (3211)
  (22111)    (211111)  (2221)
  (211111)             (22111)
  (1111111)
		

Crossrefs

Column k = 0 is A000041.
Column n = k is A004526.
The complement for all submultisets is A046663, strict A365663.
For subsets instead of partitions we have A365541, non-binary A365381.
The non-binary version is A365543, strict A365661.
Row sums are A366738.
The strict case is A367405.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], MemberQ[Total/@Subsets[#, {2}],k]&]], {n,2,10}, {k,2,n}]

A367405 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with two distinct parts summing to k.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 1, 1, 1, 2, 1, 0, 1, 1, 3, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 4, 2, 2, 3, 2, 3, 3, 3, 3, 5, 3, 2, 4, 3, 4, 4, 5, 3, 4, 5, 3, 3, 5, 4, 4, 5, 5, 5, 4, 4, 6, 4, 3, 6, 5, 6, 5, 7, 5, 7, 4, 5, 6, 5, 5, 7, 7, 8, 7, 8, 8, 7, 7, 5, 5, 7
Offset: 3

Views

Author

Gus Wiseman, Nov 18 2023

Keywords

Examples

			Triangle begins:
  1
  0  1
  0  0  2
  1  1  1  2
  1  0  1  1  3
  1  1  1  1  2  3
  1  1  1  2  2  2  4
  2  2  3  2  3  2  3  4
  2  2  3  2  3  3  3  3  5
  3  2  4  3  4  4  5  3  4  5
  3  3  5  4  4  5  5  5  4  4  6
  4  3  6  5  6  5  7  5  7  4  5  6
  5  5  7  7  8  7  8  8  7  7  5  5  7
  6  5  9  8 10  7 10  9 10  7  9  5  6  7
  7  7 10 10 12 11 11 11 12 10  9  9  6  6  8
  9  7 13 11 15 12 13 13 15 13 13  9 11  6  7  8
Row n = 9 counts the following strict partitions:
  (6,2,1)  (5,3,1)  (4,3,2)  (5,3,1)  (6,2,1)  (6,2,1)  (8,1)
                             (4,3,2)  (4,3,2)  (5,3,1)  (7,2)
                                                        (6,3)
                                                        (5,4)
Row n = 13 counts the following strict partitions (A=10, B=11, C=12):
  A21   931   841   751   652   751   841   931   A21  A21  C1
  7321  7321  832   742   643   7321  742   832   832  931  B2
  6421  5431  7321  6421  6421  652   7321  7321  742  841  A3
              6421  5431  5431  6421  643   643   652  751  94
              5431              5431  5431  6421            85
                                                            76
		

Crossrefs

Column n = k is A004526.
Column k = 3 is A025148.
For subsets instead of partitions we have A365541, non-binary A365381.
The non-binary version is A365661, non-strict A365543.
The non-binary complement is A365663, non-strict A046663.
Row sums are A366741, non-strict A366738.
The non-strict version is A367404.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#,{2}], k]&]], {n,3,10}, {k,3,n}]

A365832 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with k distinct sums of nonempty subsets.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 3, 0, 0, 0, 1, 0, 1, 0, 3, 0, 0, 1, 1, 0, 0, 1, 0, 4, 0, 0, 0, 3, 0, 0, 0, 1, 0, 4, 0, 0, 2, 2, 0, 0, 1, 0, 1, 0, 5, 0, 0, 0, 5, 0, 0, 0, 1, 0, 1, 0, 5, 0, 0, 2, 5, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Gus Wiseman, Sep 28 2023

Keywords

Examples

			The partition (7,6,1) has sums 1, 6, 7, 8, 13, 14, so is counted under T(14,6).
Triangle begins:
  1
  0  1
  0  1  0
  0  1  0  1
  0  1  0  1  0
  0  1  0  2  0  0
  0  1  0  2  0  0  1
  0  1  0  3  0  0  0  1
  0  1  0  3  0  0  1  1  0
  0  1  0  4  0  0  0  3  0  0
  0  1  0  4  0  0  2  2  0  0  1
  0  1  0  5  0  0  0  5  0  0  0  1
  0  1  0  5  0  0  2  5  0  0  0  0  2
  0  1  0  6  0  0  0  8  0  0  0  1  0  2
  0  1  0  6  0  0  3  7  0  0  0  0  3  1  1
  0  1  0  7  0  0  0 12  0  0  0  1  0  4  0  2
  0  1  0  7  0  0  3 11  0  0  0  1  3  2  2  1  1
  0  1  0  8  0  0  0 16  0  0  0  1  0  7  0  3  0  2
  0  1  0  8  0  0  4 15  0  0  0  1  3  3  6  2  0  0  3
  0  1  0  9  0  0  0 21  0  0  0  2  0  9  0  7  0  1  0  4
  0  1  0  9  0  0  4 20  0  0  1  0  4  8  5  5  0  0  2  0  5
Row n = 14 counts the following partitions (A..E = 10..14):
  (E)  .  (D1)  .  .  (761)  (B21)  .  .  .  .  (6521)  (8321)  (7421)
          (C2)        (752)  (A31)              (6431)
          (B3)        (743)  (941)              (5432)
          (A4)               (932)
          (95)               (851)
          (86)               (842)
                             (653)
		

Crossrefs

Row sums are A000009.
Rightmost column n = k is A188431, non-strict A126796.
The one-based weighted row sums are A284640.
The corresponding rank statistic is A299701.
The non-strict version is A365658.
Central column n = 2k in the non-strict case is A365660.
Reverse-weighted row-sums are A365922, non-strict A276024.
A000041 counts integer partitions.
A000124 counts distinct sums of subsets of {1..n}.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[Union[Total/@Rest[Subsets[#]]]]==k&]],{n,0,15},{k,0,n}]

A366753 Number of integer partitions of n without all different sums of two-element submultisets.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 4, 9, 11, 22, 27, 48, 61, 98, 123, 188, 237, 345, 435, 611, 765, 1046, 1305, 1741, 2165, 2840, 3502, 4527, 5562, 7083, 8650, 10908, 13255, 16545, 20016, 24763, 29834, 36587, 43911, 53514, 63964, 77445, 92239, 111015, 131753
Offset: 0

Views

Author

Gus Wiseman, Nov 07 2023

Keywords

Examples

			The two-element submultisets of y = {1,1,1,2,2,3} are {1,1}, {1,2}, {1,3}, {2,2}, {2,3}, with sums 2, 3, 4, 4, 5, which are not all different, so y is counted under a(10).
The a(8) = 1 through a(13) = 11 partitions:
  (3221)  (32211)  (4321)    (33221)    (4332)      (43321)
                   (32221)   (43211)    (5331)      (53221)
                   (322111)  (322211)   (5421)      (53311)
                             (3221111)  (43221)     (54211)
                                        (322221)    (332221)
                                        (332211)    (432211)
                                        (432111)    (3222211)
                                        (3222111)   (3322111)
                                        (32211111)  (4321111)
                                                    (32221111)
                                                    (322111111)
		

Crossrefs

Semiprime divisors are counted by A086971, distinct sums A366739.
The non-binary complement is A108917, strict A275972, ranks A299702.
These partitions have ranks A366740.
The non-binary version is A366754, strict A316402, ranks A299729.
A276024 counts positive subset-sums of partitions, strict A284640.
A304792 counts subset-sum of partitions, strict A365925.
A365543 counts partitions with a subset-sum k, complement A046663.
A365661 counts strict partitions with a subset-sum k, complement A365663.
A366738 counts semi-sums of partitions, strict A366741.
A367096 lists semiprime divisors, row sums A076290.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!UnsameQ@@Total/@Union[Subsets[#,{2}]]&]],{n,0,30}]

A367394 Number of integer partitions of n whose length is a semi-sum of the parts.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 3, 3, 6, 7, 14, 15, 25, 30, 46, 54, 80, 97, 139, 169, 229, 282, 382, 461, 607, 746, 962, 1173, 1499, 1817, 2302, 2787, 3467, 4201, 5216, 6260, 7702, 9261, 11294, 13524, 16418, 19572, 23658, 28141, 33756, 40081, 47949, 56662, 67493, 79639
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			For the partition y = (3,3,2,1) we have 4 = 3 + 1, so y is counted under a(9).
The a(2) = 1 through a(10) = 14 partitions:
  (11)  .  (211)  (221)  (321)   (421)   (521)    (621)    (721)
                         (2211)  (2221)  (2222)   (3222)   (3322)
                         (3111)  (3211)  (3221)   (3321)   (3331)
                                         (3311)   (4221)   (4222)
                                         (32111)  (4311)   (4321)
                                         (41111)  (32211)  (5221)
                                                  (42111)  (5311)
                                                           (32221)
                                                           (33211)
                                                           (42211)
                                                           (43111)
                                                           (331111)
                                                           (421111)
                                                           (511111)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A236912 counts partitions containing no semi-sum, ranks A364461.
A237113 counts partitions containing a semi-sum, ranks A364462.
A237668 counts sum-full partitions, sum-free A237667.
A366738 counts semi-sums of partitions, strict A366741.
Triangles:
A008284 counts partitions by length, strict A008289.
A365543 counts partitions with a subset-sum k, strict A365661.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], MemberQ[Total/@Subsets[#,{2}], Length[#]]&]], {n,0,10}]

A367395 Number of strict integer partitions of n whose length is the sum of two distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 5, 5, 7, 8, 11, 13, 17, 19, 25, 28, 35, 41, 49, 57, 68, 78, 92, 107, 124, 143, 166, 192, 220, 254, 291, 335, 382, 439, 499, 572, 649, 741, 840, 956, 1080, 1226, 1383, 1566, 1762, 1988, 2235, 2515, 2822, 3166, 3547
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2023

Keywords

Examples

			The strict partition (5,3,2,1) has 4 = 3 + 1 so is counted under a(11).
The a(6) = 1 through a(17) = 7 strict partitions (A..E = 10..14):
  321  421  521  621  721   821   921   A21   B21   C21    D21    E21
                      4321  5321  6321  5431  6431  6531   7531   7631
                                        7321  8321  7431   8431   8531
                                                    9321   A321   9431
                                                    54321  64321  B321
                                                                  65321
                                                                  74321
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A088809/A093971 count twofold sum-full subsets.
A236912 counts partitions containing no semi-sum, ranks A364461.
A237113 counts partitions containing a semi-sum, ranks A364462.
A237668 counts sum-full partitions, sum-free A237667.
A366738 counts semi-sums of partitions, strict A366741.
Triangles:
A008284 counts partitions by length, strict A008289.
A365541 counts subsets with a semi-sum k.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#,{2}], Length[#]]&]], {n,0,30}]

A237194 Triangular array: T(n,k) = number of strict partitions P of n into positive parts such that P includes a partition of k.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 0, 1, 2, 1, 1, 1, 1, 3, 2, 2, 1, 2, 2, 4, 2, 2, 2, 2, 2, 2, 5, 3, 2, 3, 1, 3, 2, 3, 6, 3, 3, 4, 3, 3, 4, 3, 3, 8, 5, 4, 5, 4, 3, 4, 5, 4, 5, 10, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 12, 7, 6, 7, 7, 7, 4, 7, 7, 7, 6, 7, 15, 8, 7, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2014

Keywords

Examples

			First 13 rows:
1
0 1
1 1 2
1 0 1 2
1 1 1 1 3
2 2 1 2 2 4
2 2 2 2 2 2 5
3 2 3 1 3 2 3 6
3 3 4 3 3 4 3 3 8
5 4 5 4 3 4 5 4 5 10
5 5 5 5 5 5 5 5 5 5 12
7 6 7 7 7 4 7 7 7 6 7 15
8 7 8 8 8 8 8 8 8 8 7 8 18
T(12,4) = 7 counts these partitions:  [8,4], [8,3,1], [7,4,1], [6,4,2], [6,3,2,1], [5,4,3], [5,4,2,1].
		

Crossrefs

Column k = n is A000009.
Column k = 2 is A015744.
Column k = 1 is A025147.
The non-strict complement is obtained by adding zeros after A046663.
Diagonal n = 2k is A237258.
Row sums are A284640.
For subsets instead of partitions we have A365381.
The non-strict version is obtained by removing column k = 0 from A365543.
Including column k = 0 gives A365661.
The complement is obtained by adding zeros after A365663.

Programs

  • Mathematica
    Table[theTotals = Map[{#, Map[Total, Subsets[#]]} &, Select[IntegerPartitions[nn], # == DeleteDuplicates[#] &]]; Table[Length[Map[#[[1]] &, Select[theTotals, Length[Position[#[[2]], sumTo]] >= 1 &]]], {sumTo, nn}], {nn, 45}] // TableForm
    u = Flatten[%]  (* Peter J. C. Moses, Feb 04 2014 *)
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#], k]&]], {n,6}, {k,n}] (* Gus Wiseman, Nov 16 2023 *)

Formula

T(n,k) = T(n,n-k) for k=1..n-1, n >= 2.

A367402 Number of integer partitions of n whose semi-sums cover an interval of positive integers.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 10, 13, 17, 20, 26, 31, 38, 44, 58, 64, 81, 95, 116, 137, 166, 192, 233, 278, 330, 385, 459, 542, 636, 759, 879, 1038, 1211, 1418, 1656, 1942, 2242, 2618, 3029, 3535, 4060, 4735, 5429, 6299, 7231, 8346, 9556, 11031, 12593, 14482, 16525
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partition y = (3,2,1,1) has semi-sums {2,3,4,5}, which is an interval, so y is counted under a(7).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (211)   (221)    (51)      (61)       (62)
                    (1111)  (2111)   (222)     (322)      (71)
                            (11111)  (321)     (2221)     (332)
                                     (2211)    (3211)     (2222)
                                     (21111)   (22111)    (3221)
                                     (111111)  (211111)   (22211)
                                               (1111111)  (32111)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For parts instead of sums we have A034296, ranks A073491.
For all subset-sums we have A126796, ranks A325781, strict A188431.
The complement for parts instead of sums is A239955, ranks A073492.
The complement for all sub-sums is A365924, ranks A365830, strict A365831.
The complement is counted by A367403.
The strict case is A367410, complement A367411.
A000009 counts partitions covering an initial interval, ranks A055932.
A086971 counts semi-sums of prime indices.
A261036 counts complete partitions by maximum.
A276024 counts positive subset-sums of partitions, strict A284640.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], (d=Total/@Subsets[#,{2}];If[d=={}, {}, Range[Min@@d,Max@@d]]==Union[d])&]], {n,0,15}]

A367410 Number of strict integer partitions of n whose semi-sums cover an interval of positive integers.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 4, 6, 6, 7, 7, 8, 8, 11, 9, 11, 11, 12, 12, 15, 14, 15, 16, 16, 16, 19, 18, 19, 22, 21, 21, 24, 22, 25, 26, 26, 26, 30, 28, 29, 32, 31, 32, 37, 35, 36, 38, 39, 39, 43, 42, 43, 47, 46, 49, 51, 52, 51, 58
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partition y = (4,2,1) has semi-sums {3,5,6} which are missing 4, so y is not counted under a(7).
The a(1) = 1 through a(9) = 6 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)    (8)    (9)
            (2,1)  (3,1)  (3,2)  (4,2)    (4,3)  (5,3)  (5,4)
                          (4,1)  (5,1)    (5,2)  (6,2)  (6,3)
                                 (3,2,1)  (6,1)  (7,1)  (7,2)
                                                        (8,1)
                                                        (4,3,2)
		

Crossrefs

For parts instead of sums we have A001227:
- non-strict A034296, ranks A073491
- complement A238007
- non-strict complement A239955, ranks A073492
The non-binary version is A188431:
- non-strict A126796, ranks A325781
- complement A365831
- non-strict complement A365924, ranks A365830
The non-strict version is A367402.
The non-strict complement is A367403.
The complement is counted by A367411.
A000009 counts partitions covering an initial interval, ranks A055932.
A046663 counts partitions w/o submultiset summing to k, strict A365663.
A365543 counts partitions w/ submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&(d=Total/@Subsets[#,{2}]; If[d=={},{}, Range[Min@@d, Max@@d]]==Union[d])&]], {n,0,30}]

A367411 Number of strict integer partitions of n whose semi-sums do not cover an interval of positive integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 4, 5, 8, 10, 14, 16, 23, 27, 35, 42, 52, 61, 75, 89, 106, 126, 149, 173, 204, 237, 274, 319, 369, 424, 490, 560, 642, 734, 838, 952, 1085, 1231, 1394, 1579, 1784, 2011, 2269, 2554, 2872, 3225, 3619, 4054, 4540, 5077, 5671, 6332
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partition y = (4,2,1) has semi-sums {3,5,6} which are missing 4, so y is counted under a(7).
The a(7) = 1 through a(13) = 10 partitions:
  (4,2,1)  (4,3,1)  (5,3,1)  (5,3,2)  (5,4,2)  (6,4,2)    (6,4,3)
           (5,2,1)  (6,2,1)  (5,4,1)  (6,3,2)  (6,5,1)    (6,5,2)
                             (6,3,1)  (6,4,1)  (7,3,2)    (7,4,2)
                             (7,2,1)  (7,3,1)  (7,4,1)    (7,5,1)
                                      (8,2,1)  (8,3,1)    (8,3,2)
                                               (9,2,1)    (8,4,1)
                                               (5,4,2,1)  (9,3,1)
                                               (6,3,2,1)  (10,2,1)
                                                          (6,4,2,1)
                                                          (7,3,2,1)
		

Crossrefs

For parts instead of sums we have A238007:
- complement A001227
- non-strict complement A034296, ranks A073491
- non-strict A239955, ranks A073492
The non-strict version is A367403.
The non-strict complement is A367402.
The complement is counted by A367410.
The non-binary version is A365831:
- non-strict complement A126796, ranks A325781
- complement A188431
- non-strict A365924, ranks A365830
A000009 counts partitions covering an initial interval, ranks A055932.
A046663 counts partitions w/o submultiset summing to k, strict A365663.
A365543 counts partitions w/ submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&(d=Total/@Subsets[#, {2}];If[d=={},{}, Range[Min@@d,Max@@d]]!=Union[d])&]], {n,0,30}]
Previous Showing 31-40 of 46 results. Next