cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 64 results. Next

A370320 Number of non-condensed integer partitions of n, or partitions where it is not possible to choose a different divisor of each part.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 6, 9, 13, 20, 28, 40, 54, 74, 102, 135, 180, 235, 310, 397, 516, 658, 843, 1066, 1349, 1687, 2119, 2634, 3273, 4045, 4995, 6128, 7517, 9171, 11181, 13579, 16457, 19884, 23992, 28859, 34646, 41506, 49634, 59211, 70533, 83836, 99504, 117867
Offset: 0

Views

Author

Gus Wiseman, Mar 02 2024

Keywords

Comments

Includes all partitions containing 1.

Examples

			The a(0) = 0 through a(8) = 13 partitions:
  .  .  (11)  (111)  (211)   (221)    (222)     (331)      (611)
                     (1111)  (311)    (411)     (511)      (2222)
                             (2111)   (2211)    (2221)     (3221)
                             (11111)  (3111)    (3211)     (3311)
                                      (21111)   (4111)     (4211)
                                      (111111)  (22111)    (5111)
                                                (31111)    (22211)
                                                (211111)   (32111)
                                                (1111111)  (41111)
                                                           (221111)
                                                           (311111)
                                                           (2111111)
                                                           (11111111)
		

Crossrefs

The complement is counted by A239312 (condensed partitions).
These partitions have ranks A355740.
Factorizations in the case of prime factors are A368413, complement A368414.
The complement for prime factors is A370592, ranks A368100.
The version for prime factors (not all divisors) is A370593, ranks A355529.
For a unique choice we have A370595, ranks A370810.
For multiple choices we have A370803, ranks A370811.
The case without ones is A370804, complement A370805.
The version for factorizations is A370813, complement A370814.
A000005 counts divisors.
A000041 counts integer partitions.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 chooses prime factors of prime indices, variations A355744, A355745.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[Divisors/@#], UnsameQ@@#&]]==0&]],{n,0,30}]

Extensions

a(31)-a(47) from Alois P. Heinz, Mar 03 2024

A370583 Number of subsets of {1..n} such that it is not possible to choose a different prime factor of each element.

Original entry on oeis.org

0, 1, 2, 4, 10, 20, 44, 88, 204, 440, 908, 1816, 3776, 7552, 15364, 31240, 63744, 127488, 257592, 515184, 1036336, 2079312, 4166408, 8332816, 16709632, 33470464, 66978208, 134067488, 268236928, 536473856, 1073233840, 2146467680, 4293851680, 8588355424, 17177430640
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2024

Keywords

Examples

			The a(0) = 0 through a(5) = 20 subsets:
  .  {1}  {1}    {1}      {1}        {1}
          {1,2}  {1,2}    {1,2}      {1,2}
                 {1,3}    {1,3}      {1,3}
                 {1,2,3}  {1,4}      {1,4}
                          {2,4}      {1,5}
                          {1,2,3}    {2,4}
                          {1,2,4}    {1,2,3}
                          {1,3,4}    {1,2,4}
                          {2,3,4}    {1,2,5}
                          {1,2,3,4}  {1,3,4}
                                     {1,3,5}
                                     {1,4,5}
                                     {2,3,4}
                                     {2,4,5}
                                     {1,2,3,4}
                                     {1,2,3,5}
                                     {1,2,4,5}
                                     {1,3,4,5}
                                     {2,3,4,5}
                                     {1,2,3,4,5}
		

Crossrefs

Multisets of this type are ranked by A355529, complement A368100.
For divisors instead of factors we have A355740, complement A368110.
The complement for set-systems is A367902, ranks A367906, unlabeled A368095.
The version for set-systems is A367903, ranks A367907, unlabeled A368094.
For non-isomorphic multiset partitions we have A368097, complement A368098.
The version for factorizations is A368413, complement A368414.
The complement is counted by A370582.
For a unique choice we have A370584.
Partial sums of A370587, complement A370586.
The minimal case is A370591.
The version for partitions is A370593, complement A370592.
For binary indices instead of factors we have A370637, complement A370636.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]],{n,0,10}]

Formula

a(n) = 2^n - A370582(n).

Extensions

a(19)-a(34) from Alois P. Heinz, Feb 27 2024

A088957 Hyperbinomial transform of the sequence of 1's.

Original entry on oeis.org

1, 2, 6, 29, 212, 2117, 26830, 412015, 7433032, 154076201, 3608522954, 94238893883, 2715385121740, 85574061070045, 2928110179818478, 108110945014584623, 4284188833355367440, 181370804507130015569, 8169524599872649117330, 390114757072969964280163
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2003

Keywords

Comments

See A088956 for the definition of the hyperbinomial transform.
a(n) is the number of partial functions on {1,2,...,n} that are endofunctions with no cycles of length > 1. The triangle A088956 classifies these functions according to the number of undefined elements in the domain. The triangle A144289 classifies these functions according to the number of edges in their digraph representation (considering the empty function to have 1 edge). The triangle A203092 classifies these functions according to the number of connected components. - Geoffrey Critzer, Dec 29 2011
a(n) is the number of rooted subtrees (for a fixed root) in the complete graph on n+1 vertices: a(3) = 29 is the number of rooted subtrees in K_4: 1 of size 1, 3 of size 2, 9 of size 3, and 16 spanning subtrees. - Alex Chin, Jul 25 2013 [corrected by Marko Riedel, Mar 31 2019]
From Gus Wiseman, Jan 28 2024: (Start)
Also the number of labeled loop-graphs on n vertices such that it is possible to choose a different vertex from each edge in exactly one way. For example, the a(3) = 29 uniquely choosable loop-graphs (loops shown as singletons) are:
{} {1} {1,2} {1,12} {1,2,13} {1,12,13}
{2} {1,3} {1,13} {1,2,23} {1,12,23}
{3} {2,3} {2,12} {1,3,12} {1,13,23}
{2,23} {1,3,23} {2,12,13}
{3,13} {2,3,12} {2,12,23}
{3,23} {2,3,13} {2,13,23}
{1,2,3} {3,12,13}
{3,12,23}
{3,13,23}
(End)

Examples

			a(5) = 2117 = 1296 + 625 + 160 + 30 + 5 + 1 = sum of row 5 of triangle A088956.
		

Crossrefs

Cf. A088956 (triangle).
Row sums of A144289. - Alois P. Heinz, Jun 01 2009
Column k=1 of A144303. - Alois P. Heinz, Oct 30 2012
The covering case is A000272, also the case of exactly n edges.
Without the choice condition we have A006125 (shifted left).
The unlabeled version is A087803.
The choosable version is A368927, covering A369140, loopless A133686.
The non-choosable version is A369141, covering A369142, loopless A367867.

Programs

  • Haskell
    a088957 = sum . a088956_row  -- Reinhard Zumkeller, Jul 07 2013
    
  • Maple
    a:= n-> add((n-j+1)^(n-j-1)*binomial(n,j), j=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 30 2012
  • Mathematica
    nn = 16; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
    Range[0, nn]! CoefficientList[Series[Exp[x] Exp[t], {x, 0, nn}], x]  (* Geoffrey Critzer, Dec 29 2011 *)
    With[{nmax = 50}, CoefficientList[Series[-LambertW[-x]*Exp[x]/x, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 14 2017 *)
  • PARI
    x='x+O('x^10); Vec(serlaplace(-lambertw(-x)*exp(x)/x)) \\ G. C. Greubel, Nov 14 2017

Formula

a(n) = Sum_{k=0..n} (n-k+1)^(n-k-1)*C(n, k).
E.g.f.: A(x) = exp(x+sum(n>=1, n^(n-1)*x^n/n!)).
E.g.f.: -LambertW(-x)*exp(x)/x. - Vladeta Jovovic, Oct 27 2003
a(n) ~ exp(1+exp(-1))*n^(n-1). - Vaclav Kotesovec, Jul 08 2013
Binomial transform of A000272. - Gus Wiseman, Jan 25 2024

A370636 Number of subsets of {1..n} such that it is possible to choose a different binary index of each element.

Original entry on oeis.org

1, 2, 4, 7, 14, 24, 39, 61, 122, 203, 315, 469, 676, 952, 1307, 1771, 3542, 5708, 8432, 11877, 16123, 21415, 27835, 35757, 45343, 57010, 70778, 87384, 106479, 129304, 155802, 187223, 374446, 588130, 835800, 1124981, 1456282, 1841361, 2281772, 2791896, 3367162
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 1 through a(4) = 14 subsets:
  {}  {}   {}     {}     {}
      {1}  {1}    {1}    {1}
           {2}    {2}    {2}
           {1,2}  {3}    {3}
                  {1,2}  {4}
                  {1,3}  {1,2}
                  {2,3}  {1,3}
                         {1,4}
                         {2,3}
                         {2,4}
                         {3,4}
                         {1,2,4}
                         {1,3,4}
                         {2,3,4}
		

Crossrefs

Simple graphs of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A134964, complement A140637.
Simple graphs not of this type are counted by A367867, covering A367868.
Set systems of this type are counted by A367902, ranks A367906.
Set systems not of this type are counted by A367903, ranks A367907.
Set systems uniquely of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A version for MM-numbers of multisets is A368100, complement A355529.
Factorizations are counted by A368414/A370814, complement A368413/A370813.
For prime indices we have A370582, differences A370586.
The complement for prime indices is A370583, differences A370587.
The complement is A370637, differences A370589, without ones A370643.
The case of a unique choice is A370638, maxima A370640, differences A370641.
First differences are A370639.
The minimal case of the complement is A370642, without ones A370644.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]], Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]

Formula

a(2^n - 1) = A367902(n).
Partial sums of A370639.

Extensions

a(19)-a(40) from Alois P. Heinz, Mar 09 2024

A368927 Number of labeled loop-graphs covering a subset of {1..n} such that it is possible to choose a different vertex from each edge.

Original entry on oeis.org

1, 2, 7, 39, 314, 3374, 45630, 744917, 14245978, 312182262, 7708544246, 211688132465, 6397720048692, 210975024924386, 7537162523676076, 289952739051570639, 11949100971787370300, 525142845422124145682, 24515591201199758681892, 1211486045654016217202663
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2024

Keywords

Comments

These are loop-graphs where every connected component has a number of edges less than or equal to the number of vertices. Also loop-graphs with at most one cycle (unicyclic) in each connected component.

Examples

			The a(0) = 1 through a(2) = 7 loop-graphs (loops shown as singletons):
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1,2}}
             {{1},{2}}
             {{1},{1,2}}
             {{2},{1,2}}
		

Crossrefs

Without the choice condition we have A006125.
The case of a unique choice is A088957, unlabeled A087803.
The case without loops is A133686, complement A367867, covering A367869.
For exactly n edges and no loops we have A137916, unlabeled A137917.
For exactly n edges we have A333331 (maybe), complement A368596.
For edges of any positive size we have A367902, complement A367903.
The covering case is A369140, complement A369142.
The complement is counted by A369141.
The complement for n edges and no loops is A369143, covering A369144.
The unlabeled version is A369145, complement A369146.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006129 counts covering graphs, unlabeled A002494.
A322661 counts labeled covering loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]], Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]],{n,0,5}]
  • PARI
    seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(exp(3*t/2 - 3*t^2/4)/sqrt(1-t) ))} \\ Andrew Howroyd, Feb 02 2024

Formula

Binomial transform of A369140.
Exponential transform of A369197 with A369197(1) = 2.
E.g.f.: exp(3*T(x)/2 - 3*T(x)^2/4)/sqrt(1-T(x)), where T(x) is the e.g.f. of A000169. - Andrew Howroyd, Feb 02 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 02 2024

A369141 Number of labeled loop-graphs covering a subset of {1..n} such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 1, 25, 710, 29394, 2051522, 267690539, 68705230758, 35184059906570, 36028789310419722, 73786976083150073999, 302231454897259573627852, 2475880078570549574773324062, 40564819207303333310731978895956, 1329227995784915872613854321228773937
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2024

Keywords

Comments

Also labeled loop-graphs having at least one connected component containing more edges than vertices.

Examples

			The a(0) = 0 through a(3) = 25 loop-graphs (loops shown as singletons):
  .  .  {{1},{2},{1,2}}  {{1},{2},{1,2}}
                         {{1},{3},{1,3}}
                         {{2},{3},{2,3}}
                         {{1},{2},{3},{1,2}}
                         {{1},{2},{3},{1,3}}
                         {{1},{2},{3},{2,3}}
                         {{1},{2},{1,2},{1,3}}
                         {{1},{2},{1,2},{2,3}}
                         {{1},{2},{1,3},{2,3}}
                         {{1},{3},{1,2},{1,3}}
                         {{1},{3},{1,2},{2,3}}
                         {{1},{3},{1,3},{2,3}}
                         {{2},{3},{1,2},{1,3}}
                         {{2},{3},{1,2},{2,3}}
                         {{2},{3},{1,3},{2,3}}
                         {{1},{1,2},{1,3},{2,3}}
                         {{2},{1,2},{1,3},{2,3}}
                         {{3},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3}}
                         {{1},{2},{3},{1,2},{2,3}}
                         {{1},{2},{3},{1,3},{2,3}}
                         {{1},{2},{1,2},{1,3},{2,3}}
                         {{1},{3},{1,2},{1,3},{2,3}}
                         {{2},{3},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Without the choice condition we have A006125, unlabeled A000088.
The case of a unique choice is A088957, unlabeled A087803.
The case without loops is A367867, covering A367868.
For edges of any positive size we have A367903, complement A367902.
For exactly n edges we have A368596, complement A333331 (maybe).
The complement is counted by A368927, covering A369140.
The covering case is A369142.
For n edges and no loops we have A369143, covering A369144.
The unlabeled version is A369146 (covering A369147), complement A369145.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A133686 counts choosable graphs, covering A367869.
A322661 counts labeled covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n], {1,2}]],Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]

Formula

Binomial transform of A369142.
a(n) = A006125(n + 1) - A368927(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(6) onwards from Andrew Howroyd, Feb 02 2024

A368596 Number of n-element sets of singletons or pairs of distinct elements of {1..n}, or loop graphs with n edges, such that it is not possible to choose a different element from each.

Original entry on oeis.org

0, 0, 0, 3, 66, 1380, 31460, 800625, 22758918, 718821852, 25057509036, 957657379437, 39878893266795, 1799220308202603, 87502582432459584, 4566246347310609247, 254625879822078742956, 15115640124974801925030, 952050565540607423524658, 63425827673509972464868323
Offset: 0

Views

Author

Gus Wiseman, Jan 04 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(3) = 3 set-systems:
  {{1},{2},{1,2}}
  {{1},{3},{1,3}}
  {{2},{3},{2,3}}
		

Crossrefs

The version without the choice condition is A014068, covering A368597.
The complement appears to be A333331.
For covering pairs we have A367868.
Allowing edges of any positive size gives A368600, any length A367903.
The covering case is A368730.
The unlabeled version is A368835.
A000085 counts set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A058891 counts set-systems (without singletons A016031), unlabeled A000612.
A100861 counts set partitions into singletons or pairs by number of pairs.
A111924 counts set partitions into singletons or pairs by length.
A322661 counts covering half-loop-graphs, connected A062740.
A369141 counts non-choosable loop-graphs, covering A369142.
A369146 counts unlabeled non-choosable loop-graphs, covering A369147.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}], {n}],Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]

Extensions

Terms a(7) and beyond from Andrew Howroyd, Jan 10 2024

A367769 Number of finite sets of nonempty non-singleton subsets of {1..n} contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 0, 1, 1490, 67027582, 144115188036455750, 1329227995784915872903806998967001298, 226156424291633194186662080095093570025917938800079226639565284090686126876
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
Includes all set-systems with more edges than covered vertices, but this condition is not sufficient.

Examples

			The a(3) = 1 set-system is: {{1,2},{1,3},{2,3},{1,2,3}}.
		

Crossrefs

Set-systems without singletons are counted by A016031, covering A323816.
The complement is A367770, with singletons allowed A367902 (ranks A367906).
The version for simple graphs is A367867, covering A367868.
The version allowing singletons and empty edges is A367901.
The version allowing singletons is A367903, ranks A367907.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Select[Subsets[Range[n]], Length[#]>1&]], Select[Tuples[#], UnsameQ@@#&]=={}&]], {n,0,3}]

Formula

a(n) = 2^(2^n-n-1) - A367770(n) = A016031(n+1) - A367770(n). - Christian Sievers, Jul 28 2024

Extensions

a(6)-a(8) from Christian Sievers, Jul 28 2024

A370637 Number of subsets of {1..n} such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 1, 2, 8, 25, 67, 134, 309, 709, 1579, 3420, 7240, 15077, 30997, 61994, 125364, 253712, 512411, 1032453, 2075737, 4166469, 8352851, 16731873, 33497422, 67038086, 134130344, 268328977, 536741608, 1073586022, 2147296425, 4294592850, 8589346462, 17179033384
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(5) = 8 subsets:
  .  .  .  {1,2,3}  {1,2,3}    {1,2,3}
                    {1,2,3,4}  {1,4,5}
                               {1,2,3,4}
                               {1,2,3,5}
                               {1,2,4,5}
                               {1,3,4,5}
                               {2,3,4,5}
                               {1,2,3,4,5}
		

Crossrefs

Simple graphs not of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A140637, complement A134964.
Simple graphs of this type are counted by A367867, covering A367868.
Set systems not of this type are counted by A367902, ranks A367906.
Set systems of this type are counted by A367903, ranks A367907.
Set systems uniquely not of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368097, complement A368098.
A version for MM-numbers of multisets is A355529, complement A368100.
Factorizations are counted by A368413/A370813, complement A368414/A370814.
The complement for prime indices is A370582, differences A370586.
For prime indices we have A370583, differences A370587.
First differences are A370589.
The complement is counted by A370636, differences A370639.
The case without ones is A370643.
The version for a unique choice is A370638, maxima A370640, diffs A370641.
The minimal case is A370642, without ones A370644.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]],{n,0,10}]

Formula

a(2^n - 1) = A367903(n).
Partial sums of A370589.

Extensions

a(21)-a(34) from Alois P. Heinz, Mar 09 2024

A369194 Number of labeled loop-graphs covering n vertices with at most n edges.

Original entry on oeis.org

1, 1, 4, 23, 199, 2313, 34015, 606407, 12712643, 306407645, 8346154699, 253476928293, 8490863621050, 310937199521774, 12356288017546937, 529516578044589407, 24339848939829286381, 1194495870124420574751, 62332449791125883072149, 3446265450868329833016605
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Comments

Row-sums of left portion of A369199.

Examples

			The a(0) = 1 through a(3) = 23 loop-graphs (loops shown as singletons):
  {}  {{1}}  {{1,2}}      {{1},{2,3}}
             {{1},{2}}    {{2},{1,3}}
             {{1},{1,2}}  {{3},{1,2}}
             {{2},{1,2}}  {{1,2},{1,3}}
                          {{1,2},{2,3}}
                          {{1},{2},{3}}
                          {{1,3},{2,3}}
                          {{1},{2},{1,3}}
                          {{1},{2},{2,3}}
                          {{1},{3},{1,2}}
                          {{1},{3},{2,3}}
                          {{2},{3},{1,2}}
                          {{2},{3},{1,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1},{1,3},{2,3}}
                          {{2},{1,2},{1,3}}
                          {{2},{1,2},{2,3}}
                          {{2},{1,3},{2,3}}
                          {{3},{1,2},{1,3}}
                          {{3},{1,2},{2,3}}
                          {{3},{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
		

Crossrefs

The minimal case is A001862, without loops A053530.
This is the covering case of A066383 and A369196, cf. A369192 and A369193.
The case of equality is A368597, without loops A367863.
The version without loops is A369191.
The connected case is A369197, without loops A129271.
The unlabeled version is A370169, equality A368599, non-covering A368598.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts simple graphs; also loop-graphs if shifted left.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A133686 counts choosable graphs, covering A367869.
A322661 counts covering loop-graphs, unlabeled A322700.
A367867 counts non-choosable graphs, covering A367868.
A368927 counts choosable loop-graphs, covering A369140.
A369141 counts non-choosable loop-graphs, covering A369142.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]], Length[Union@@#]==n&&Length[#]<=n&]],{n,0,5}]

Formula

Inverse binomial transform of A369196.
Previous Showing 21-30 of 64 results. Next