cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 3244 results. Next

A272075 Primes of the form k^4 + 29*k^2 + 101.

Original entry on oeis.org

101, 131, 233, 443, 821, 1451, 2441, 3923, 6053, 9011, 13001, 18251, 25013, 33563, 44201, 57251, 73061, 92003, 114473, 140891, 207371, 295283, 476681, 951491, 1078373, 1369961, 1536251, 1913963, 3472523, 3804341, 4159451, 4943843, 5834531, 7972043, 9925541
Offset: 1

Views

Author

Robert Price, Apr 19 2016

Keywords

Examples

			233 is prime and it is in this sequence since 233 = 2^4 + 29*2^2 + 101.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[#^4 + 29#^2 + 101, PrimeQ[#] &]
  • PARI
    lista(nn) = for(n=0, nn, if(ispseudoprime(p=n^4+29*n^2+101), print1(p, ", "))); \\ Altug Alkan, Apr 19 2016

A030567 Triangle T(n,k): Write n in base 6 and reverse order of digits to get row n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 5, 0, 1, 0, 1, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Keywords

Comments

If columns are numbered starting with k=0, then T(n,k) contains the coefficient of 6^k in n's base-6 expansion. - M. F. Hasler, Jul 21 2013

Crossrefs

See A030548 for a quite complete list of crossreferences.
Cf. A030568 - A030573 for positions of a given digit.
Cf. A030575 - A030580 for run lengths, A030581 - A030585 for more.
Row sums (same as those of A030548) are in A053827.
Cf. A030308, A030341, A030386, A031235, A031007, A031045, A031087, A031298 for the base-2 to base-10 analogs.

Programs

  • Mathematica
    Flatten[Table[Reverse[IntegerDigits[n,6]],{n,0,50}]] (* Harvey P. Dale, Sep 27 2015 *)
  • PARI
    A030567(n,k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\6^k%6 \\ Assuming that columns start with k=0, cf. comment. TO DO: implement flattened sequence, such that A030567(n)=a(n). - M. F. Hasler, Jul 21 2013

Extensions

Initial 0 and better name from Philippe Deléham, Oct 20 2011
Edited and crossrefs added by M. F. Hasler, Jul 21 2013

A046601 First numerator and then denominator of the 1/5-Pascal triangle (by row). To get a 1/5-Pascal triangle, replace "2" in the third row of the Pascal triangle with "1/5" and calculate all other rows as in the Pascal triangle.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 6, 5, 6, 5, 1, 1, 1, 1, 11, 5, 12, 5, 11, 5, 1, 1, 1, 1, 16, 5, 23, 5, 23, 5, 16, 5, 1, 1, 1, 1, 21, 5, 39, 5, 46, 5, 39, 5, 21, 5, 1, 1, 1, 1, 26, 5, 12, 1, 17, 1, 17, 1, 12, 1, 26, 5, 1, 1, 1, 1, 31, 5, 86, 5, 29, 1, 34, 1, 29, 1, 86, 5
Offset: 1

Views

Author

Keywords

Examples

			1/1;
1/1  1/1;
1/1  1/5  1/1;
1/1  6/5  6/5  1/1;
1/1 11/5 12/5 11/5  1/1;
1/1 16/5 23/5 23/5 16/5  1/1;
1/1 21/5 39/5 46/5 39/5 21/5  1/1;
1/1 26/5 12/1 17/1 17/1 12/1 26/5 1/1; ...
		

A031235 Triangle T(n,k): write n in base 5, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 0, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 4, 2, 1, 0
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A030308, A030341, A030386, A030567, A031007, A031045, A031087, A031298 for the base-2 to base-10 analogs.
Cf. A007091.

Programs

  • Haskell
    a031235 n k = a031235_tabf !! n !! k
    a031235_row n = a031235_tabf !! n
    a031235_tabf = iterate succ [0] where
       succ []     = [1]
       succ (4:ts) = 0 : succ ts
       succ (t:ts) = (t + 1) : ts
    -- Reinhard Zumkeller, Sep 18 2015
  • Mathematica
    Reverse[IntegerDigits[#,5]]&/@Range[0,40]//Flatten (* Harvey P. Dale, Aug 02 2016 *)
  • PARI
    A031235(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\5^k%5 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030341, ... - M. F. Hasler, Jul 21 2013
    

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011

A030386 Triangle T(n,k): write n in base 4, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 3, 0, 1, 1, 1, 2, 1, 3, 1, 0, 2, 1, 2, 2, 2, 3, 2, 0, 3, 1, 3, 2, 3, 3, 3, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 0, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 0, 3, 1, 1, 3, 1, 2, 3, 1, 3, 3, 1, 0, 0, 2, 1, 0, 2, 2, 0, 2, 3, 0, 2, 0, 1, 2
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
0
1
2
3
0, 1
1, 1
2, 1
3, 1
0, 2
1, 2
2, 2
3, 2
0, 3
1, 3
2, 3
3, 3
0, 0, 1
1, 0, 1 ... - _Philippe Deléham_, Oct 20 2011
		

Crossrefs

Cf. A030308, A030341, A031235, A030567, A031007, A031045, A031087, A031298 for the base-2 to base-10 analogs.
Cf. A007090.

Programs

  • Haskell
    a030386 n k = a030386_tabf !! n !! k
    a030386_row n = a030386_tabf !! n
    a030386_tabf = iterate succ [0] where
       succ []     = [1]
       succ (3:ts) = 0 : succ ts
       succ (t:ts) = (t + 1) : ts
    -- Reinhard Zumkeller, Sep 18 2015
  • Maple
    A030386_row := n -> op(convert(n, base, 4)):
    seq(A030386_row(n), n=0..36); # Peter Luschny, Nov 28 2017
  • Mathematica
    Flatten[Table[Reverse[IntegerDigits[n,4]],{n,0,50}]] (* Harvey P. Dale, Oct 13 2012 *)
  • PARI
    A030386(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\4^k%4 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030341, ... \\ M. F. Hasler, Jul 21 2013
    

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011

A031087 Triangle T(n,k): write n in base 9, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A030308, A030341, A030386, A031235, A030567, A031007, A031045, A031298 for the base-2 to base-10 analogs.

Programs

  • Haskell
    a031087 n k = a031087_row n !! (k-1)
    a031087_row n | n < 9     = [n]
                  | otherwise = m : a031087_row n' where (n',m) = divMod n 9
    a031087_tabf = map a031087_row [0..]
    -- Reinhard Zumkeller, Jul 07 2015
  • PARI
    A031087(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\9^k%9 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030567 and others. - M. F. Hasler, Jul 21 2013
    

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011

A046213 First numerator and then denominator of 1/2-Pascal triangle (by row). To get a 1/2-Pascal triangle, replace "2" in third row of Pascal triangle with "1/2" and calculate all other rows as in Pascal triangle.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 3, 2, 1, 1, 1, 1, 5, 2, 3, 1, 5, 2, 1, 1, 1, 1, 7, 2, 11, 2, 11, 2, 7, 2, 1, 1, 1, 1, 9, 2, 9, 1, 11, 1, 9, 1, 9, 2, 1, 1, 1, 1, 11, 2, 27, 2, 20, 1, 20, 1, 27, 2, 11, 2, 1, 1, 1, 1, 13, 2, 19, 1, 67, 2, 40, 1, 67, 2, 19, 1, 13, 2, 1, 1, 1, 1, 15, 2
Offset: 1

Views

Author

Keywords

Examples

			1/1;
1/1  1/1;
1/1  1/2  1/1;
1/1  3/2  3/2  1/1;
1/1  5/2  3/1  5/2  1/1;
1/1  7/2 11/2 11/2  7/2  1/1;
1/1  9/2  9/1 11/1  9/1  9/2  1/1;
1/1 11/2 27/2 20/1 20/1 27/2 11/2 1/1; ...
		

Programs

  • Mathematica
    fractionalPascal[1,] = {1}; fractionalPascal[2,] = {1,1}; fractionalPascal[3,frac_] = {1,frac,1}; fractionalPascal[n_,frac_] := fractionalPascal[n,frac] = Join[{1}, Map[Total, Partition[fractionalPascal[n-1,frac],2,1]],{1}]; Flatten[Map[Transpose,Transpose[{Numerator[#], Denominator[#]}]&[Map[fractionalPascal[#,1/2]&, Range[15]]]]] (* Peter J. C. Moses, Apr 04 2013 *)

A031214 Initial term of sequence An.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 0, 1, 0, 2, 2, 2, 1, 2, 1, 1, 2, 1, 0, 1, 1, 1, 0, 1, 2, 8, 14, 4, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 0, 4, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Keywords

Comments

This ignores the offset and gives the first term of the actual entry.
Since the sequences in the OEIS occasionally change their initial terms (for editorial reasons), this is an especially ill-defined sequence! - N. J. A. Sloane, Jan 01 2005
Sequences like this are deprecated. - Joerg Arndt, Apr 16 2020

Examples

			A000001 begins 0,1,1,1,2,1,2,1,5,2,... so a(1) = 0 = a(31214).
		

Crossrefs

Extensions

Data updated by Sean A. Irvine, Apr 16 2020

A144396 The odd numbers greater than 1.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133
Offset: 1

Views

Author

Paul Curtz, Oct 03 2008

Keywords

Comments

Last number of the n-th row of the triangle described in A142717.
If negated, these are also the values at local minima of the sequence A141620.
a(n) is the shortest leg of the n-th Pythagorean triple with consecutive longer leg and hypotenuse. The n-th such triple is given by (2n+1,2n^2+2n, 2n^2+2n+1), so that the longer legs are A046092(n) and the hypotenuses are A099776(n). - Ant King, Feb 10 2011
Numbers k such that the symmetric representation of sigma(k) has a pair of bars as its ends (cf. A237593). - Omar E. Pol, Sep 28 2018
Numbers k such that there is a prime knot with k crossings and braid index 2. (IS this true with "prime" removed?) - Charles R Greathouse IV, Feb 14 2023

Crossrefs

Complement of A004275 and of A004277.
Essentially the same as A140139, A130773, A062545, A020735, A005818.

Programs

Formula

a(n) = A005408(n+1) = A000290(n+1) - A000290(n).
G.f.: x*(3-x)/(1-x)^2. - Jaume Oliver Lafont, Aug 30 2009
a(n) = A254858(n-1,2). - Reinhard Zumkeller, Feb 09 2015

Extensions

Edited by R. J. Mathar, May 21 2009

A147307 Numbers A of the constrained search for ABC records described in A147306.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 5, 19, 41, 125, 23, 1, 1, 1, 95
Offset: 1

Views

Author

Artur Jasinski, Nov 09 2008

Keywords

Comments

The sequences A147305, a(n) and A147307 are steered by searching for records in the ABC conjecture along increasing C confined as described in A147306, the main entry for these three sequences.

Crossrefs

Formula

a(n)+A147305(n) = A147306(n). gcd(a(n),A147305(n))=1.

Extensions

Edited by R. J. Mathar, Aug 24 2009
Previous Showing 11-20 of 3244 results. Next