cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 3244 results. Next

A031045 Triangle T(n,k): write n in base 8, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 6, 5, 7, 5, 0, 6, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A030308, A030341, A030386, A031235, A030567, A031007, A031087, A031298 for the base-2 to base-10 analogs.

Programs

  • Maple
    seq(op(convert(n,base,8)),n=0..100); # Robert Israel, Jul 22 2019
  • Mathematica
    Flatten[Table[Reverse[IntegerDigits[n,8]],{n,80}]] (* Harvey P. Dale, Aug 08 2011 *)
  • PARI
    A031045(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.");*/n\8^k%8 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030341, ... Note: The operation could be done using bitwise arithmetic, bitand(n>>(3*k),7), but this is not significantly faster in PARI. - M. F. Hasler, Jul 21 2013

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011

A137583 Number of elements in the n-th period of the Janet periodic table of elements.

Original entry on oeis.org

2, 2, 8, 8, 18, 18, 32, 32
Offset: 1

Views

Author

Paul Curtz, Apr 26 2008

Keywords

Comments

Essentially 2 followed by the first terms of A093907.
This puts Hydrogen and Helium in the first row, Lithium and Beryllium into the second, Boron to Magnesium into the third etc.

Crossrefs

Programs

  • Mathematica
    Flatten@ Table[2 (n #)^2 & /@ {-1, 1}, {n, 4}] (* Michael De Vlieger, Jul 22 2016 *)

Extensions

Edited by R. J. Mathar, Oct 02 2009

A201734 Numbers n such that 90*n + 47 is prime.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 9, 10, 13, 14, 16, 18, 20, 22, 24, 25, 27, 29, 31, 32, 38, 39, 43, 44, 49, 50, 51, 53, 56, 63, 64, 65, 66, 69, 77, 80, 83, 84, 87, 90, 91, 95, 98, 101, 102, 105, 106, 107, 108, 109, 111, 116, 118, 120, 121, 122, 123, 129, 132, 134, 135, 137
Offset: 1

Views

Author

J. W. Helkenberg, Dec 04 2011

Keywords

Comments

A reverse reading of A142313; all entries of A142313 have digital root 2 and last digit 7.

Crossrefs

Programs

  • Magma
    [n: n in [0..200] | IsPrime(90*n+47)]; // Vincenzo Librandi, Dec 11 2011
    
  • Maple
    for n from 0 to 240 do
        p := 90*n+47 ;
        if isprime(p) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Dec 05 2011
  • Mathematica
    Select[Range[0,400],PrimeQ[90 #+47]&] (* Vincenzo Librandi, Dec 11 2011 *)
  • PARI
    is(n)=isprime(90*n+47) \\ Charles R Greathouse IV, Feb 17 2017

Formula

a(n) = (A142313(n)-47)/90.

A031007 Triangle T(n,k): Write n in base 7, reverse order of digits, to get row n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 6, 5, 0, 6, 1, 6, 2, 6, 3, 6, 4, 6, 5, 6, 6, 6
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A030308, A030341, A030386, A031235, A030567, A031045, A031087, A031298 for the base-2 to base-10 analogs.

Programs

  • Mathematica
    Flatten[Table[Reverse[IntegerDigits[n,7]],{n,0,50}]] (* Harvey P. Dale, Feb 25 2014 *)
  • PARI
    A031007(n, k=-1)={k<0&&error("Flattened sequence not yet implemented.");n\7^k%7} \\ Assuming that columns start with k=0 as in A030308, A030341, ... TO DO: implement flattened sequence, such that A030567(n)=a(n). - M. F. Hasler, Jul 21 2013

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011

A128393 Numbers k such that k^2 divides 13^k - 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 14, 20, 28, 42, 60, 68, 84, 140, 183, 204, 220, 340, 366, 406, 420, 476, 660, 732, 812, 942, 1020, 1218, 1428, 1540, 1806, 1860, 1884, 2380, 2436, 2562, 3612, 3660, 3740, 4060, 4620, 5060, 5124, 6594, 7004, 7140, 8420, 9420, 9940, 11220
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Select[Range[12000],PowerMod[13,#,#^2]==1&]] (* Harvey P. Dale, Sep 05 2012 *)

A128397 Numbers k such that k^2 divides 17^k-1.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 36, 40, 42, 48, 60, 72, 78, 80, 84, 116, 120, 126, 144, 156, 168, 180, 220, 232, 234, 240, 252, 312, 336, 342, 348, 360, 420, 440, 464, 468, 504, 546, 580, 624, 660, 684, 696, 720, 780, 840, 880, 936, 1008, 1044, 1092, 1160
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Comments

The first 9 numbers (and many more) which are a multiple of their digital sum in all bases from 2 through 16 (A218087), are members of this sequence, and also of A177917. - M. F. Hasler, Oct 22 2012

Crossrefs

Programs

A137752 First numerator and then denominator (left to right) of Leibniz's harmonic-like triangle.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 5, 6, 1, 3, 1, 4, 7, 12, 7, 12, 1, 4, 1, 5, 9, 20, 31, 30, 9, 20, 1, 5, 1, 6, 11, 30, 49, 60, 49, 60, 11, 30, 1, 6, 1, 7, 13, 42, 71, 105, 209, 140, 71, 105, 13, 42, 1, 7, 1, 8, 15, 56, 97, 168, 351, 280, 351, 280, 97, 168
Offset: 1

Views

Author

Mohammad K. Azarian, Feb 10 2008

Keywords

Comments

In this triangle the right-hand edge consists of the reciprocals of the positive integers. A number that is not in this edge is obtained by adding the number diagonally above it to the number to its immediate right. Note that in Leibniz's harmonic triangle we subtract the two numbers to get a number which is not on the right-hand edge.

Examples

			1/1;
1/2, 1/2;
1/3, 5/6, 1/3;
1/4, 7/12, 7/12, 1/4;
1/5, 9/20, 31/30, 9/20, 1/5;
		

Crossrefs

A137753 First denominator and then numerator (left to right) of Leibniz's harmonic-like triangle.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 1, 6, 5, 3, 1, 4, 1, 12, 7, 12, 7, 4, 1, 5, 1, 20, 9, 30, 31, 20, 9, 5, 1, 6, 1, 30, 11, 60, 49, 60, 49, 30, 11, 6, 1, 7, 1, 42, 13, 105, 71, 140, 209, 105, 71, 42, 13, 7, 1, 8, 1, 56, 15, 168, 97, 280, 351, 280, 351, 168, 97
Offset: 1

Views

Author

Mohammad K. Azarian, Feb 10 2008

Keywords

Examples

			1/1; --> 1 1
1/2, 1/2; --> 2 1 2 1
1/3, 5/6, 1/3; --> 3 1 6 5 3 1
1/4, 7/12, 7/12, 1/4; --> 4 1 12 7 12 7 4 1
1/5, 9/20, 31/30, 9/20, 1/5; --> 5 1 20 9 30 31 20 9 5 1
		

Crossrefs

A139198 a(n) = prime(n)!/10 - 1.

Original entry on oeis.org

11, 503, 3991679, 622702079, 35568742809599, 12164510040883199, 2585201673888497663999, 884176199373970195454361599999, 822283865417792281772556287999999
Offset: 3

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! - 10)/10, {n, 3, 20}]
  • PARI
    a(n) = prime(n)!/10 - 1 \\ David A. Corneth, Jun 02 2017

Formula

a(n) = A039716(n)/10 - 1. - Elmo R. Oliveira, Jan 20 2023

A115341 a(n) = abs(A154879(n+1)).

Original entry on oeis.org

2, 4, 0, 8, 8, 24, 40, 88, 168, 344, 680, 1368, 2728, 5464, 10920, 21848, 43688, 87384, 174760, 349528, 699048, 1398104, 2796200, 5592408, 11184808, 22369624, 44739240, 89478488, 178956968, 357913944, 715827880, 1431655768, 2863311528
Offset: 0

Views

Author

Roger L. Bagula, Mar 06 2006

Keywords

Comments

General form: a(n)=2^n-a(n-1). - Vladimir Joseph Stephan Orlovsky, Dec 11 2008
For n>=1, a(n) is a(n) is the number of generalized compositions of n+3 when there are i^2-2*i-1 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010

Crossrefs

Programs

  • Magma
    [2] cat [(2^(n+1)-8*(-1)^n)/3: n in [1..30]]; // G. C. Greubel, Dec 30 2017
  • Mathematica
    g0[n_] = 2 - Sum[(-1)^(i + 1)/Sqrt[2]^(2*i), {i, 0, n}] f[x_] = ZTransform[g0[n], n, x] g[n_] = InverseZTransform[f[1/x], x, n] a0 = Table[Abs[g[n]], {n, 1, 25}]
    k=0;lst={k};Do[k=2^n-k;AppendTo[lst, k], {n, 3, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
    Table[If[n==0, 2, (2^(n+1)-8*(-1)^n)/3], {n,0,30}] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    for(n=0,30, print1(if(n==0, 2, (2^(n+1)-8*(-1)^n)/3), ", ")) \\ G. C. Greubel, Dec 30 2017
    

Formula

a(n) = (2^(n+1)-8*(-1)^n)/3, n>0.
a(n) = a(n-1) + 2*a(n-2), n>2.
G.f.: 2+4*x*(1-x)/((1+x)*(1-2*x)).

Extensions

Edited by the Associate Editors of the OEIS, Aug 21 2009
Previous Showing 21-30 of 3244 results. Next