cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 3244 results. Next

A102185 Iccanobirt semiprime indices (15 of 15): Indices of semiprime numbers in A102125.

Original entry on oeis.org

5, 15, 16, 19, 20, 21, 22, 24, 28, 29, 35, 38, 44, 54, 58, 59, 72, 84, 106, 108, 137, 145, 174, 227, 238, 253, 258, 362, 363, 371, 388
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Formula

A102125(a(n)) = A102205(n).

Extensions

a(24)-a(27) from Robert Price, Nov 11 2018
Offset changed to 1 and a(28)-a(31) from Jinyuan Wang, Aug 15 2021

A102191 Iccanobirt semiprimes (1 of 15): Semiprime numbers in A102111.

Original entry on oeis.org

4, 185, 1135955, 550783729, 10755767351826313, 885150880428474601, 145045760838001005739, 276700469046311728441, 17906534239981723909956235510218343, 23104799226903739899579090259021365554, 504198286800075916303995704410366363448429, 2363732899718211729861685511671459865604449872085443
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Formula

a(n) = A102111(A102171(n)).

Extensions

Offset changed to 1 and more terms from Jinyuan Wang, Jul 31 2021

A102205 Iccanobirt semiprimes (15 of 15): Semiprime numbers in A102125.

Original entry on oeis.org

4, 5071, 6313, 31591, 9853, 11733, 31865, 736481, 9834802, 5123383, 906334841, 312395329, 73044385753, 39216355244851, 353123779923181, 944016528715333, 901870160743125919, 3394064622591216338731, 798539095539570459224764519, 5844680137439021618014007903
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_}]:=With[{ir=IntegerReverse},{b,c,ir[ir[a]+ir[b]+ir[c]]}]; Select[NestList[nxt,{0,0,1},200][[;;,1]],PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 22 2025 *)

Formula

a(n) = A102125(A102185(n)).

Extensions

Offset changed to 1 and a(20) from Jinyuan Wang, Aug 14 2021

A109556 prime(k) for those k where floor((2*(prime(k+1)-prime(k))*PrimePi(k) mod (8*k))/k) = m with m = 2.

Original entry on oeis.org

3, 5, 11, 17, 79, 97, 103, 109, 127, 163, 193, 223, 229, 277, 307, 313, 349, 379, 397, 439, 457, 463, 487, 499, 613, 643, 677, 727, 733, 751, 941, 947, 971, 977, 991, 1013, 1033, 1063, 1097, 1103, 1117, 1123, 1181, 1187, 1217, 1223, 1231, 1283, 1291, 1321
Offset: 1

Views

Author

Roger L. Bagula, Jun 27 2005

Keywords

Crossrefs

Cf. A109556-A109569 for m = 2..15.

Programs

  • Mathematica
    a = Flatten[Table[If[Floor[2*Mod[(Prime[n + 1] - Prime[n])*PrimePi[n]/n, 8]] == 2, Prime[n], {}], {n, 1, 400}]]

Extensions

Name edited and offset corrected by Amiram Eldar, Jun 02 2025

A109569 prime(k) for those k where floor((2*(prime(k+1)-prime(k))*PrimePi(k) mod (8*k))/k) = m with m = 15.

Original entry on oeis.org

19609, 25471, 35617, 44293, 58831, 89689, 107377, 162143, 218287, 253159, 290249, 302329, 360091, 404597, 507217, 514967, 517639, 531383, 570253, 619397, 621143, 639757, 642281, 673669, 716173, 736279, 794249, 795349, 815729, 873787, 912649, 933073, 937253, 1013063
Offset: 1

Views

Author

Roger L. Bagula, Jun 27 2005

Keywords

Crossrefs

Cf. A109556-A109569 for m = 2..15.

Programs

  • Mathematica
    a = Flatten[Table[If[Floor[2*Mod[(Prime[n + 1] - Prime[n])*PrimePi[n]/n, 8]] == 15, Prime[n], {}], {n, 1, 10000}]]

Extensions

Name edited, offset corrected and more terms added by Amiram Eldar, Jun 02 2025

A128395 Numbers k such that k^2 divides 15^k-1.

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 28, 56, 112, 136, 272, 452, 812, 904, 952, 1624, 1808, 1904, 3164, 3248, 6328, 11912, 12656, 15368, 18632, 23824, 27608, 30736, 37264, 47908, 55216, 60248, 83384, 91756, 95816, 102604, 107576, 113936, 120496, 130424, 166768
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a={1};For[n=1,n<200000,n++,If[PowerMod[15,n,n^2]==1, AppendTo[a, n]]]; a (* Stefan Steinerberger, Jun 10 2007 *)
    Join[{1},Select[Range[167000],PowerMod[15,#,#^2]==1&]] (* Harvey P. Dale, Sep 14 2020 *)
  • PARI
    is(k) = Mod(15, k^2)^k == 1; \\ Amiram Eldar, May 21 2024

Extensions

More terms from Stefan Steinerberger, Jun 10 2007

A128402 Numbers k such that k^2 divides 22^k-1.

Original entry on oeis.org

1, 3, 7, 21, 39, 273, 507, 3081, 3549, 21567, 40053, 78117, 280371, 343239, 546819, 1015521, 2056899, 2402673, 5998317, 6171243, 7108647, 8740173, 12338859, 14398293, 18988203, 27115881, 41988219, 43198701, 47727771, 55431363
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Crossrefs

Programs

  • Maple
    select(t -> 22 &^ t - 1 mod t^2 = 0, [seq(2*k+1,k=0..10^6)]); # Robert Israel, Jan 23 2015
  • Mathematica
    a={}; Do[r=(22^n-1)/n^2; If[r==IntegerPart[r], AppendTo[a, n]], {n, 1, 10^3}]; a (* Vladimir Joseph Stephan Orlovsky, Aug 07 2008 *)
  • PARI
    { forstep(m=11,10^8,2, if( Mod(22,m^2)^m==1, print(m) ) ) } \\ Max Alekseyev, Oct 18 2008

Extensions

a(14)-a(30) from Max Alekseyev, Oct 18 2008

A128404 Numbers k such that k^2 divides 24^k-1.

Original entry on oeis.org

1, 23, 1081, 2870377, 7009273, 15954479, 134907719, 329435831, 537539141, 15001987199, 874750261127, 1991103024721, 4272172921319, 4862143429729, 7933540182019, 12816504745411, 41113262272969, 67084347257659
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Comments

23 divides all terms except the first.

Crossrefs

Programs

Extensions

a(5)-a(6) from Farideh Firoozbakht, Mar 05 2007
a(7)-a(10) from Ryan Propper, Feb 23 2008
Terms a(11) onward from Max Alekseyev, May 06 2010

A135577 Numbers that have only the digit "1" as first, central and final digit. For numbers with 5 or more digits the rest of digits are "0".

Original entry on oeis.org

1, 111, 10101, 1001001, 100010001, 10000100001, 1000001000001, 100000010000001, 10000000100000001, 1000000001000000001, 100000000010000000001, 10000000000100000000001, 1000000000001000000000001, 100000000000010000000000001, 10000000000000100000000000001
Offset: 1

Views

Author

Omar E. Pol, Feb 24 2008

Keywords

Comments

Also, equal to A135576(n), written in base 2.
Essentially the same as A066138. - R. J. Mathar Apr 29 2008
a(n) has 2n-1 digits.

Examples

			----------------------------
n ............ a(n)
----------------------------
1 ............. 1
2 ............ 111
3 ........... 10101
4 .......... 1001001
5 ......... 100010001
6 ........ 10000100001
7 ....... 1000001000001
8 ...... 100000010000001
9 ..... 10000000100000001
10 ... 1000000001000000001
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, LinearRecurrence[{111, -1110, 1000}, {111, 10101, 1001001}, 25]] (* G. C. Greubel, Oct 19 2016 *)
    Join[{1},Table[FromDigits[Join[{1},PadRight[{},n,0],{1},PadRight[{},n,0],{1}]],{n,0,10}]] (* Harvey P. Dale, Aug 15 2022 *)
  • PARI
    Vec(-x*(2000*x^3-1110*x^2+1)/((x-1)*(10*x-1)*(100*x-1))  + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

a(n) = A135576(n), written in base 2.
Also, a(1)=1, for n>1; a(n)=(concatenation of 1, n-2 digits 0, 1, n-2 digits 0 and 1).
From Colin Barker, Sep 16 2013: (Start)
a(n) = 1 + 10^(n-1) + 100^(n-1) for n>1.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>4.
G.f.: x*(2000*x^3 - 1110*x^2 + 1)/((1-x)*(10*x-1)*(100*x-1)). (End)
E.g.f.: (-111 - 200*x + 100*exp(x) + 10*exp(10*x) + exp(100*x))/100. - Elmo R. Oliveira, Jun 13 2025

A141269 (0, 1, 2, 3, 2^2, 5, 2*3, 7, 2^3, 3^2, 2*5, 11, 2^2*3, ...) transform in (0+1, 2+3, 2+2, 5+2, 3+7, 2+3, 3+2, 2+5, 11+2, 2+3, ...).

Original entry on oeis.org

1, 5, 4, 7, 10, 5, 5, 7, 13, 5, 15, 10, 7, 21, 5, 21, 4, 8, 9, 34, 5, 8, 4, 16, 5, 9, 31, 8, 33, 8, 13, 22, 9, 5, 39, 21, 16, 5, 46, 5, 50, 4, 14, 7, 25, 49, 7, 9, 7, 5, 19, 15, 55, 6, 16, 5, 10, 21, 88, 4, 8, 63, 34, 9, 8, 18, 5, 78, 4, 20, 25, 12, 73, 6, 75, 39, 8, 4, 21, 18, 5, 92, 6, 8, 6
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 08 2008

Keywords

Crossrefs

Extensions

Corrected at three or more places by R. J. Mathar, Feb 21 2009
Previous Showing 41-50 of 3244 results. Next