A000125 Cake numbers: maximal number of pieces resulting from n planar cuts through a cube (or cake): C(n+1,3) + n + 1.
1, 2, 4, 8, 15, 26, 42, 64, 93, 130, 176, 232, 299, 378, 470, 576, 697, 834, 988, 1160, 1351, 1562, 1794, 2048, 2325, 2626, 2952, 3304, 3683, 4090, 4526, 4992, 5489, 6018, 6580, 7176, 7807, 8474, 9178, 9920, 10701, 11522, 12384, 13288, 14235, 15226
Offset: 0
Examples
a(4)=15 because there are 15 compositions of 5 into four or fewer parts. a(6)=42 because the sum of the first four terms in the 6th row of Pascal's triangle is 1+6+15+20=42. - _Geoffrey Critzer_, Jan 23 2009 For n=5, (1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 35) and their opposite are the 26 different sums obtained by summing 5,6,7,8,9 with any sign combination. - _Olivier Gérard_, Mar 22 2010 G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 15*x^4 + 26*x^5 + 42*x^6 + 64*x^7 + ... - _Michael Somos_, Jul 07 2022
References
- V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_3.
- R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 27.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 80.
- H. E. Dudeney, Amusements in Mathematics, Nelson, London, 1917, page 177.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. H. Stickels, Mindstretching Puzzles. Sterling, NY, 1994 p. 85.
- W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 30.
- A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #45 (First published: San Francisco: Holden-Day, Inc., 1964)
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- P. Alexandersson and O. Nabawanda, Peaks are preserved under run-sorting, arXiv:2104.04220 [math.CO], 2021.
- Mohamadou Bachabi and Alain S. Togbé, Products of Fermat or Mersenne numbers in some sequences, Math. Comm. (2024) Vol. 29, 265-285.
- A. M. Baxter and L. K. Pudwell, Ascent sequences avoiding pairs of patterns, 2014.
- M. L. Cornelius, Variations on a geometric progression, Mathematics in School, 4 (No. 3, May 1975), p. 32. (Annotated scanned copy)
- F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
- R. K. Guy, Letter to N. J. A. Sloane
- Zachary Hoelscher, Semicomplete Arithmetic Sequences, Division of Hypercubes, and the Pell Constant, arXiv:2102.07083 [math.NT], 2021. Mentions this sequence.
- Marie Lejeune, On the k-binomial equivalence of finite words and k-binomial complexity of infinite words, Ph. D. Thesis, Université de Liège (Belgium, 2021).
- D. A. Lind, On a class of nonlinear binomial sums, Fib. Quart., 3 (1965), 292-298.
- Svante Linusson, The number of M-sequences and f-vectors, Combinatorica, vol 19 no 2 (1999) 255-266.
- Toufik Mansour, Howard Skogman, and Rebecca Smith, Sorting inversion sequences, arXiv:2401.06662 [math.CO], 2024. See page 7.
- R. J. Mathar, The number of binary mxm matrices with at most k 1's in each row or column, (2014) Table 3 column 1.
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Sebastian Mizera and Sabrina Pasterski, Celestial Geometry, arXiv:2204.02505 [hep-th], 2022.
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- D. J. Price, Some unusual series occurring in n-dimensional geometry, Math. Gaz., 30 (1946), 149-150.
- L. Pudwell and A. Baxter, Ascent sequences avoiding pairs of patterns, 2014.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- H. P. Robinson, Letter to N. J. A. Sloane, Aug 16 1971, with attachments
- Eric Weisstein's World of Mathematics, Cake Number
- Eric Weisstein's World of Mathematics, Cube Division by Planes
- Eric Weisstein's World of Mathematics, Cylinder Cutting
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Space Division by Planes
- Eric Weisstein's World of Mathematics, Triangular Graph
- Reinhard Zumkeller, Enumerations of Divisors
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(n^3+5*n+6)/6: n in [0..50]]; // Vincenzo Librandi, Nov 08 2014
-
Maple
A000125 := n->(n+1)*(n^2-n+6)/6;
-
Mathematica
Table[(n^3 + 5 n + 6)/6, {n, 0, 50}] (* Harvey P. Dale, Jan 19 2013 *) LinearRecurrence[{4, -6, 4, -1}, {1, 2, 4, 8}, 50] (* Harvey P. Dale, Jan 19 2013 *) Table[Binomial[n, 3] + n, {n, 20}] (* Eric W. Weisstein, Jul 21 2017 *)
-
PARI
a(n)=(n^2+5)*n/6+1 \\ Charles R Greathouse IV, Jun 15 2011
-
PARI
Vec((1-2*x+2*x^2)/((1-x)^4) + O(x^100)) \\ Altug Alkan, Oct 16 2015
-
Python
def A000125_gen(): # generator of terms a, b, c = 1, 1, 1 while True: yield a a, b, c = a+b, b+c, c+1 it = A000125_gen() A000125_list = [next(it) for in range(50)] # _Cole Dykstra, Aug 03 2022
Formula
a(n) = (n+1)*(n^2-n+6)/6 = (n^3 + 5*n + 6) / 6.
G.f.: (1 - 2*x + 2x^2)/(1-x)^4. - [Simon Plouffe in his 1992 dissertation.]
E.g.f.: (1 + x + x^2/2 + x^3/6)*exp(x).
a(n) = binomial(n,3) + binomial(n,2) + binomial(n,1) + binomial(n,0). - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
Paraphrasing the previous comment: the sequence is the binomial transform of [1,1,1,1,0,0,0,...]. - Gary W. Adamson, Oct 23 2007
From Ilya Gutkovskiy, Jul 18 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = Sum_{k=0..n} A152947(k+1).
Inverse binomial transform of A134396.
Sum_{n>=0} a(n)/n! = 8*exp(1)/3. (End)
a(n) = -A283551(-n). - Michael Somos, Jul 07 2022
Extensions
Minor typo in comments corrected by Mauro Fiorentini, Jan 02 2018
Comments