A000247 a(n) = 2^n - n - 2.
0, 3, 10, 25, 56, 119, 246, 501, 1012, 2035, 4082, 8177, 16368, 32751, 65518, 131053, 262124, 524267, 1048554, 2097129, 4194280, 8388583, 16777190, 33554405, 67108836, 134217699, 268435426, 536870881, 1073741792, 2147483615
Offset: 2
Examples
a(3) = 4!/(2!*2!*2!) = 3.
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 296.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 2..300
- Renzo Cavalieri, Moduli spaces of pointed rational curves, (2016).
- Antal E. Fekete, Apropos Two Notes on Notation, The Amer. Math. Monthly, Vol. 101, No. 8 (Oct., 1994), pp. 771-778. See p. 776.
- Robert Israel et al, Primes 2^n - n - 2, Mathematics StackExchange.
- L. E. Jeffery, Unit-primitive matrices
- T. Mansour, Restricted permutations by patterns of type 2-1, arXiv:math/0202219 [math.CO], 2002.
- Mathoverflow, Face numbers for tropical Grassmannian G'_2,7 simplicial complex?
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Erik Vigren and Andreas Dieckmann, A New Result in Form of Finite Triple Sums for a Series from Ramanujan's Notebooks, Symmetry (2022) Vol. 14, No. 6, 1090.
- Alex Vinokur, Fibonacci-like polynomials produced by m-ary Huffman codes for absolutely ordered sequences, arXiv:cs/0411002 [cs.DM], 2004.
- Eric Weisstein's World of Mathematics, Centipede Graph
- Eric Weisstein's World of Mathematics, Connected Dominating Set
- Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Programs
-
GAP
List([2..40], n-> 2^n -n-2); # G. C. Greubel, Jul 26 2019
-
Magma
[2^n -n-2: n in [2..40]]; // G. C. Greubel, Jul 26 2019
-
Maple
A000247:=(-3+2*z)/((2*z-1)*(z-1)**2); # Simon Plouffe in his 1992 dissertation
-
Mathematica
LinearRecurrence[{4,-5,2}, {0,3,10}, 40] (* Harvey P. Dale, Aug 23 2011 *) Table[2^n -n-2, {n,2,40}] (* Eric W. Weisstein, Aug 09 2017 *)
-
Maxima
A000247(n):=2^n-n-2$ makelist(A000247(n),n,2,30); /* Martin Ettl, Nov 08 2012 */
-
PARI
a(n)=2^n-n-2 \\ Charles R Greathouse IV, Sep 28 2015
-
Sage
[2^n -n-2 for n in (2..40)] # G. C. Greubel, Jul 26 2019
Formula
E.g.f.: (exp(x)-1-x)*(exp(x)-1).
G.f.: x^3*(3-2*x)/((1-2*x)*(1-x)^2).
Starting (3, 10, 25, 56, ...) = binomial transform of [3, 7, 8, 8, 8, ...]. - Gary W. Adamson, Nov 07 2007
a(2)=0, a(3)=3, a(4)=10, a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - Harvey P. Dale, Aug 23 2011
a(n) = (Sum_{k=2..floor(n/2)} binomial(n+1,k)) + if(n odd, binomial(n+1,(n+1)/2)/2, 0).
a(n) = Sum_{k=0..n-3} Sum_{i=0..n-1} C(i,k). - Wesley Ivan Hurt, Sep 20 2017
Extensions
Additional comments from Michael Steyer, Dec 02 2000
More terms from Larry Reeves (larryr(AT)acm.org), Dec 04 2000
I recently changed the beginning of this sequence so the formulas etc. may need to be adjusted. - N. J. A. Sloane, Jan 24 2006
Formulas and comments adjusted for offset by Franklin T. Adams-Watters, Nov 10 2011
Comments