cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 189 results. Next

A101096 Third differences of fifth powers (A000584).

Original entry on oeis.org

1, 29, 150, 390, 750, 1230, 1830, 2550, 3390, 4350, 5430, 6630, 7950, 9390, 10950, 12630, 14430, 16350, 18390, 20550, 22830, 25230, 27750, 30390, 33150, 36030, 39030, 42150, 45390, 48750, 52230, 55830, 59550, 63390, 67350, 71430, 75630, 79950, 84390, 88950
Offset: 1

Views

Author

Cecilia Rossiter, Dec 15 2004

Keywords

Comments

Original Name: Shells (nexus numbers) of shells of shells of the power of 5.
For n>=3 a(n) is equal to the number of functions f:{1,2,3,4,5}->{1,2,...,n} such that Im(f) contains 3 fixed elements. - Aleksandar M. Janjic and Milan Janjic, Feb 24 2007

Crossrefs

Cf. A069477.
Third differences of A000584, second differences of A022521, and first differences of A068236.
Cf. A101095 for other sequences related to MagicNKZ.
Cf. A001844.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( x*(x^4+26*x^3+66*x^2+26*x+1)/(1-x)^3)); // G. C. Greubel, Dec 01 2018
  • Mathematica
    MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 3, 3}, {k, 0, 34}]
    CoefficientList[Series[(-z^4-26z^3-66z^2-26z-1)/(z-1)^3, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
    Join[{1,29},Differences[Range[0,40]^5,3]] (* or *) LinearRecurrence[{3,-3,1},{1,29,150,390,750},40] (* Harvey P. Dale, Feb 02 2017 *)
  • PARI
    a(n)=if(n>2,60*n^2-180*n+150,28*n-27) \\ Charles R Greathouse IV, Oct 11 2015
    
  • Sage
    [sum([(-1)^j*binomial(3, j)*(k-j+1)^5 for j in range(min(k+2,4))]) for k in range(40)] # Danny Rorabaugh, Apr 27 2015
    

Formula

a(k+1) = MagicNKZ(5,k,3) where MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n+1-z,j)*(k-j+1)^n. (Cf. A101095.)
a(n+1) = 30*(1 - 2*n + 2*n^2) for n>2.
a(n+3) = A069477(n). - Vladimir Joseph Stephan Orlovsky, Jun 19 2011
G.f.: x*(x^4+26*x^3+66*x^2+26*x+1)/(1-x)^3. - Colin Barker, Oct 17 2012
Sum_{n>=1} 1/a(n) = (Pi/60)*tanh(Pi/2) + 871/870. - Amiram Eldar, Jan 27 2022

Extensions

MagicNKZ material edited and SeriesAtLevelR material removed by Danny Rorabaugh, Apr 27 2015

A101092 Second partial sums of fifth powers (A000584).

Original entry on oeis.org

1, 34, 310, 1610, 6035, 18236, 47244, 109020, 229845, 450670, 832546, 1463254, 2465255, 4005080, 6304280, 9652056, 14419689, 21076890, 30210190, 42543490, 58960891, 80531924, 108539300, 144509300, 190244925, 247861926, 319827834, 409004110, 518691535
Offset: 1

Views

Author

Cecilia Rossiter, Dec 14 2004

Keywords

Crossrefs

Programs

  • Magma
    [(n*(1+n)*(2+n)*(-1+n*(2+n))*(1+2*n*(2+n)))/84: n in [1..40]]; // Vincenzo Librandi, Mar 24 2014
    
  • Maple
    f:=n->(2*n^7-7*n^5+7*n^3-2*n)/84;
    [seq(f(n),n=0..50)];  # N. J. A. Sloane, Mar 23 2014
  • Mathematica
    CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
    Nest[Accumulate,Range[30]^5,2] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,34,310,1610,6035,18236,47244,109020},30] (* Harvey P. Dale, Aug 22 2022 *)
  • PARI
    a(n)=n*(n+1)*(n+2)*(n*(n+2)-1)*(2*n*(2 + n)+1)/84 \\ Charles R Greathouse IV, Apr 21 2015
    
  • Python
    def A101092(n): return n*(n*(n*(n*(n*(n*(n+7<<1)+35)+35)+7)-7)-2)//84 # Chai Wah Wu, Oct 03 2024
  • Sage
    [n*(1+n)*(2+n)*(n*(2+n)-1)*(1+2*n*(2+n))/84 for n in range(1,30)] # Danny Rorabaugh, Apr 21 2015
    

Formula

a(n) = (n*(1 + n)*(2 + n)*(-1 + n*(2 + n))*(1 + 2*n*(2 + n)))/84.
G.f.: x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1-x)^8. - Colin Barker, Apr 16 2012
a(n) = Sum_{i=1..n} i*(n+1-i)^5, by the definition. - Bruno Berselli, Jan 31 2014
a(n) = 2*a(n-1) - a(n-2) + n^5. - Luciano Ancora, Jan 08 2015
E.g.f.: exp(x)*x*(84 + 1344*x + 2954*x^2 + 1995*x^3 + 525*x^4 + 56*x^5 + 2*x^6)/84. - Stefano Spezia, May 04 2024

Extensions

Edited by Ralf Stephan, Dec 16 2004

A101099 Third partial sums of fifth powers (A000584).

Original entry on oeis.org

1, 35, 345, 1955, 7990, 26226, 73470, 182490, 412335, 863005, 1695551, 3158805, 5624060, 9629140, 15933420, 25585476, 40005165, 61082055, 91292245, 133835735, 192796626, 273328550, 381867850, 526377150, 716622075, 964484001, 1284311835
Offset: 1

Views

Author

Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004

Keywords

Crossrefs

Cf. A000584.

Programs

  • Magma
    [n*(1+n)*(2+n)*(3+n)*(-1+n*(2+n))*(2+n*(4+n))/336: n in [1..30]]; // G. C. Greubel, Dec 01 2018
    
  • Mathematica
    Nest[Accumulate[#]&,Range[30]^5,3] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,35,345,1955,7990,26226,73470,182490,412335},30] (* Harvey P. Dale, Feb 20 2015 *)
  • PARI
    vector(30, n, n*(1+n)*(2+n)*(3+n)*(-1+n*(2+n))*(2+n*(4+n))/336) \\ G. C. Greubel, Dec 01 2018
    
  • Sage
    [n*(1+n)*(2+n)*(3+n)*(-1+n*(2+n))*(2+n*(4+n))/336 for n in (1..30)] # G. C. Greubel, Dec 01 2018

Formula

a(n) = n*(1 + n)*(2 + n)*(3 + n)*(-1 + n*(2 + n))*(2 + n*(4 + n))/336.
G.f.: x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1-x)^9. - Colin Barker, Apr 16 2012
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). - Harvey P. Dale, Feb 20 2015
E.g.f.: x*(336 + 5544*x + 13608*x^2 + 10934*x^3 + 3696*x^4 + 574*x^5 + 40*x^6 + x^7)*exp(x)/336. - G. C. Greubel, Dec 01 2018
Sum_{n>=1} 1/a(n) = 224/3 - 60*sqrt(2)*Pi*cot(sqrt(2)*Pi). - Amiram Eldar, Jan 27 2022

Extensions

Edited by Ralf Stephan, Dec 16 2004

A155013 Integer part of square root of n^5 = A000584(n).

Original entry on oeis.org

1, 5, 15, 32, 55, 88, 129, 181, 243, 316, 401, 498, 609, 733, 871, 1024, 1191, 1374, 1573, 1788, 2020, 2270, 2536, 2821, 3125, 3446, 3787, 4148, 4528, 4929, 5350, 5792, 6255, 6740, 7247, 7776, 8327, 8901, 9498, 10119, 10763, 11432, 12124, 12841, 13584, 14351
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000093.
Integer part of square root of n^k: A000196 (k=1), A000093 (k=3), this sequence (k=5), A155014 (k=7), A155015 (k=11), A155016 (k=13), A155018 (k=15), A155019 (k=17),

Programs

  • Magma
    [Floor(Sqrt(n^5)): n in [1..30]]; // G. C. Greubel, Dec 30 2017
    
  • Mathematica
    a={};Do[AppendTo[a,IntegerPart[(n^5)^(1/2)]],{n,5!}];a
    IntegerPart[Sqrt[Range[50]^5]] (* Harvey P. Dale, May 14 2012 *)
    Table[Floor[Sqrt[n^5]], {n,1,30}] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    for(n=1,30, print1(sqrtint(n^5), ", ")) \\ G. C. Greubel, Dec 30 2017
    
  • Python
    from math import isqrt
    def A155013(n): return isqrt(n**5) # Chai Wah Wu, Aug 08 2025

Formula

a(n) = floor(n^2 * sqrt(n)). - Davide Rotondo, Dec 01 2024

A254644 Fourth partial sums of fifth powers (A000584).

Original entry on oeis.org

1, 36, 381, 2336, 10326, 36552, 110022, 292512, 704847, 1567852, 3263403, 6422208, 12046268, 21675408, 37608828, 63194304, 103199469, 164281524, 255573769, 389409504, 582206130, 855534680, 1237402530, 1763779680, 2480401755, 3444885756, 4729197591, 6422513536, 8634521016, 11499207456
Offset: 1

Views

Author

Luciano Ancora, Feb 05 2015

Keywords

Examples

			Fifth differences:   1, 27,  93,  119,   120, (repeat 120) (A101100)
Fourth differences:  1, 28, 121,  240,   360,   480, ...   (A101095)
Third differences:   1, 29, 150,  390,   750,  1230, ...   (A101096)
Second differences:  1, 30, 180,  570,  1320,  2550, ...   (A101098)
First differences:   1, 31, 211,  781,  2101,  4651, ...   (A022521)
-------------------------------------------------------------------------
The fifth powers:    1, 32, 243, 1024,  3125,  7776, ...   (A000584)
-------------------------------------------------------------------------
First partial sums:  1, 33, 276, 1300,  4425, 12201, ...   (A000539)
Second partial sums: 1, 34, 310, 1610,  6035, 18236, ...   (A101092)
Third partial sums:  1, 35, 345, 1955,  7990, 26226, ...   (A101099)
Fourth partial sums: 1, 36, 381, 2336, 10326, 36552, ...   (this sequence)
		

Crossrefs

Cf. A101091 (fourth partial sums of fourth powers).

Programs

  • GAP
    List([1..30], n-> Binomial(n+4,5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126); # G. C. Greubel, Aug 28 2019
  • Magma
    [Binomial(n+4,5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126: n in [1..30]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(binomial(n+4,5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126, n=1..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[n(1+n)(2+n)(3+n)(4+n)(-24 +20n +85n^2 +40n^3 +5n^4)/15120, {n, 30}] (* or *) Accumulate[Accumulate[Accumulate[Accumulate[Range[24]^5]]]] (* or *) CoefficientList[Series[(1 +26x +66x^2 +26x^3 +x^4)/(1-x)^10, {x, 0, 30}], x]
    Nest[Accumulate,Range[30]^5,4] (* or *) LinearRecurrence[{10,-45,120, -210,252,-210,120,-45,10,-1}, {1,36,381,2336,10326,36552,110022,292512, 704847,1567852},30] (* Harvey P. Dale, May 08 2016 *)
  • PARI
    vector(30, n, m=n+2; binomial(m+2,5)*(5*m^4 -35*m^2 +36)/126) \\ G. C. Greubel, Aug 28 2019
    
  • Sage
    [binomial(n+4,5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126 for n in (1..30)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1 - x)^10.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(-24 + 20*n + 85*n^2 + 40*n^3 + 5*n^4)/15120.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + n^5.

Extensions

Edited by Bruno Berselli, Feb 10 2015

A254682 Fifth partial sums of fifth powers (A000584).

Original entry on oeis.org

1, 37, 418, 2754, 13080, 49632, 159654, 452166, 1157013, 2724865, 5988268, 12410476, 24456744, 46132152, 83740980, 146935284, 250134753, 414416277, 669990046, 1059399550, 1641605680, 2497140360, 3734542890, 5498322570
Offset: 1

Views

Author

Luciano Ancora, Feb 12 2015

Keywords

Examples

			Fifth differences:   1, 27,  93,  119,   120, (repeat 120) (A101100)
Fourth differences:  1, 28, 121,  240,   360,   480, ...   (A101095)
Third differences:   1, 29, 150,  390,   750,  1230, ...   (A101096)
Second differences:  1, 30, 180,  570,  1320,  2550, ...   (A101098)
First differences:   1, 31, 211,  781,  2101,  4651, ...   (A022521)
-------------------------------------------------------------------------
The fifth powers:    1, 32, 243, 1024,  3125,  7776, ...   (A000584)
-------------------------------------------------------------------------
First partial sums:  1, 33, 276, 1300,  4425, 12201, ...   (A000539)
Second partial sums: 1, 34, 310, 1610,  6035, 18236, ...   (A101092)
Third partial sums:  1, 35, 345, 1955,  7990, 26226, ...   (A101099)
Fourth partial sums: 1, 36, 381, 2336, 10326, 36552, ...   (A254644)
Fifth partial sums:  1, 37, 418, 2754, 13080, 49632, ...   (this sequence)
		

Crossrefs

Programs

  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (- 2 + 5 n + n^2) (9 + 10 n + 2 n^2)/60480, {n,24}] (* or *)
    CoefficientList[Series[(- 1 - 26 x - 66 x^2 - 26 x^3 - x^4)/(- 1 + x)^11, {x,0,23}], x]
    Nest[Accumulate,Range[30]^5,5] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,37,418,2754,13080,49632,159654,452166,1157013,2724865,5988268},30] (* Harvey P. Dale, Jan 30 2019 *)
  • PARI
    a(n)=n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(-2+5*n+n^2)*(9+10*n+2*n^2)/60480 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (- x - 26*x^2 - 66*x^3 - 26*x^4 - x^5)/(- 1 + x)^11.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(- 2 + 5*n + n^2)*(9 + 10*n + 2*n^2)/60480.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + n^5.
Sum_{n>=1} 1/a(n) = 475867/180 - (2560/13)*sqrt(7)*Pi*tan(sqrt(7)*Pi/2) + (210/13)*sqrt(3/11)*Pi*tan(sqrt(33)*Pi/2). - Amiram Eldar, Jan 27 2022

A101095 Fourth difference of fifth powers (A000584).

Original entry on oeis.org

1, 28, 121, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1

Views

Author

Cecilia Rossiter, Dec 15 2004

Keywords

Comments

Original Name: Shells (nexus numbers) of shells of shells of shells of the power of 5.
The (Worpitzky/Euler/Pascal Cube) "MagicNKZ" algorithm is: MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n, with k>=0, n>=1, z>=0. MagicNKZ is used to generate the n-th accumulation sequence of the z-th row of the Euler Triangle (A008292). For example, MagicNKZ(3,k,0) is the 3rd row of the Euler Triangle (followed by zeros) and MagicNKZ(10,k,1) is the partial sums of the 10th row of the Euler Triangle. This sequence is MagicNKZ(5,k-1,2).

Crossrefs

Fourth differences of A000584, third differences of A022521, second differences of A101098, and first differences of A101096.
For other sequences based upon MagicNKZ(n,k,z):
...... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8
--------------------------------------------------------------------------------------
z = 0 | A000007 | A019590 | ....... MagicNKZ(n,k,0) = T(n,k+1) from A008292 .......
z = 1 | A000012 | A040000 | A101101 | A101104 | A101100 | ....... | ....... | .......
z = 2 | A000027 | A005408 | A008458 | A101103 | thisSeq | ....... | ....... | .......
z = 3 | A000217 | A000290 | A003215 | A005914 | A101096 | ....... | ....... | .......
z = 4 | A000292 | A000330 | A000578 | A005917 | A101098 | ....... | ....... | .......
z = 5 | A000332 | A002415 | A000537 | A000583 | A022521 | ....... | A255181 | .......
z = 12 | A001288 | A057788 | ....... | A254870 | A254471 | A254683 | A254646 | A254642
z = 13 | A010965 | ....... | ....... | ....... | A254871 | A254472 | A254684 | A254647
z = 14 | A010966 | ....... | ....... | ....... | ....... | A254872 | ....... | .......
--------------------------------------------------------------------------------------
Cf. A047969.

Programs

  • Magma
    I:=[1,28,121,240,360]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 07 2015
    
  • Mathematica
    MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 2, 2}, {k, 0, 34}]
    CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
    Join[{1,28,121,240},Differences[Range[50]^5,4]] (* or *) LinearRecurrence[{2,-1},{1,28,121,240,360},50] (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    a(n)=if(n>3, 120*n-240, 33*n^2-72*n+40) \\ Charles R Greathouse IV, Oct 11 2015
  • Sage
    [1,28,121]+[120*(k-2) for k in range(4,36)] # Danny Rorabaugh, Apr 23 2015
    

Formula

a(k+1) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n; n = 5, z = 2.
For k>3, a(k) = Sum_{j=0..4} (-1)^j*binomial(4, j)*(k - j)^5 = 120*(k - 2).
a(n) = 2*a(n-1) - a(n-2), n>5. G.f.: x*(1+26*x+66*x^2+26*x^3+x^4) / (1-x)^2. - Colin Barker, Mar 01 2012

Extensions

MagicNKZ material edited, Crossrefs table added, SeriesAtLevelR material removed by Danny Rorabaugh, Apr 23 2015
Name changed and keyword 'uned' removed by Danny Rorabaugh, May 06 2015

A254471 Sixth partial sums of fifth powers (A000584).

Original entry on oeis.org

1, 38, 456, 3210, 16290, 65922, 225576, 677742, 1834755, 4559620, 10547888, 22958364, 47415108, 93547260, 177288240, 324223524, 574358277, 988774554, 1658764600, 2718164150, 4359769830, 6856910190, 10591453080, 16089775650, 24068499975, 35492110056
Offset: 1

Views

Author

Luciano Ancora, Feb 15 2015

Keywords

Examples

			First differences:   1, 31, 211,  781,  2101,  4651, ... (A022521)
-------------------------------------------------------------------------
The fifth powers:    1, 32, 243, 1024,  3125,  7776, ... (A000584)
-------------------------------------------------------------------------
First partial sums:  1, 33, 276, 1300,  4425, 12201, ... (A000539)
Second partial sums: 1, 34, 310, 1610,  6035, 18236, ... (A101092)
Third partial sums:  1, 35, 345, 1955,  7990, 26226, ... (A101099)
Fourth partial sums: 1, 36, 381, 2336, 10326, 36552, ... (A254644)
Fifth partial sums:  1, 37, 418, 2754, 13080, 49632, ... (A254682)
Sixth partial sums:  1, 38, 456, 3210, 16290, 65922, ... (this sequence)
		

Crossrefs

Programs

  • Magma
    [n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)*(-29+54*n+ 81*n^2+24*n^3+2*n^4)/665280: n in [1..30]]; // Vincenzo Librandi, Feb 15 2015
    
  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (- 29 + 54 n + 81 n^2 + 24 n^3 + 2 n^4)/665280, {n, 23}] (* or *) CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(- 1 + x)^12, {x, 0, 28}], x]
  • PARI
    vector(50,n,n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(-29 + 54*n + 81*n^2 + 24*n^3 + 2*n^4)/665280) \\ Derek Orr, Feb 19 2015

Formula

G.f.: (x + 26*x^2 + 66*x^3 + 26*x^4 + x^5)/(- 1 + x)^12.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(-29 + 54*n + 81*n^2 + 24*n^3 + 2*n^4)/665280.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + n^5.

A254871 Seventh partial sums of fifth powers (A000584).

Original entry on oeis.org

1, 39, 495, 3705, 19995, 85917, 311493, 989235, 2823990, 7383610, 17931498, 40889862, 88304970, 181852230, 359140470, 683363994, 1257722271, 2246496825, 3905261425, 6623425575, 10983195405, 17840105595, 28431558675, 44521334325, 68589834300, 104081944356
Offset: 1

Views

Author

Luciano Ancora, Feb 17 2015

Keywords

Examples

			Second differences:      30, 180,  570,  1320,  2550, ...   (A068236)
First differences:    1, 31, 211,  781,  2101,  4651, ...   (A022521)
------------------------------------------------------------------------
The fifth powers:     1, 32, 243, 1024,  3125,  7776, ...   (A000584)
------------------------------------------------------------------------
First partial sums:   1, 33, 276, 1300,  4425, 12201, ...   (A000539)
Second partial sums:  1, 34, 310, 1610,  6035, 18236, ...   (A101092)
Third partial sums:   1, 35, 345, 1955,  7990, 26226, ...   (A101099)
Fourth partial sums:  1, 36, 381, 2336, 10326, 36552, ...   (A254644)
Fifth partial sums:   1, 37, 418, 2754, 13080, 49632, ...   (A254682)
Sixth partial sums:   1, 38, 456, 3210, 16290, 65922, ...   (A254471)
Seventh partial sums: 1, 39, 495, 3705, 19995, 85917, ... (this sequence)
		

Crossrefs

Programs

  • Magma
    [n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)*(7+n)*(-21+49*n +56*n^2+14*n^3+n^4)/3991680: n in [1..30]]; // Vincenzo Librandi, Feb 19 2015
  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (7 + n) ((-21 + 49 n + 56 n^2 + 14 n^3 + n^4)/3991680), {n, 23}] (* or *)
    CoefficientList[Series[(- 1 - 26 x - 66 x^2 - 26 x^3 - x^4)/(- 1 + x)^13, {x, 0, 22}], x]
  • PARI
    vector(50, n, n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(-21 + 49*n + 56*n^2 + 14*n^3 + n^4)/3991680) \\ Derek Orr, Feb 19 2015
    

Formula

G.f.: (- x - 26*x^2 - 66*x^3 - 26*x^4 - x^5)/(- 1 + x)^13.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(-21 + 49*n + 56*n^2 + 14*n^3 + n^4)/3991680.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + n^5.

A279638 Exponential transform of the fifth powers A000584.

Original entry on oeis.org

1, 1, 33, 340, 5261, 104116, 2133397, 49873552, 1290339353, 35858779408, 1073946466601, 34411135594144, 1169673799665637, 42024908270673472, 1589960095129885949, 63097191029229655456, 2618689624916494795313, 113366790415884862467328, 5107030221925521874906705
Offset: 0

Views

Author

Alois P. Heinz, Dec 16 2016

Keywords

Crossrefs

Column k=5 of A279636.
Cf. A000584.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*j^5*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..25);

Formula

E.g.f.: exp(exp(x)*(x^5+10*x^4+25*x^3+15*x^2+x)).
Showing 1-10 of 189 results. Next