A161149
a(n) = (2*n)!*(2*n+1)!/n! = n!*A000909(n), n=0,1...
Original entry on oeis.org
1, 12, 1440, 604800, 609638400, 1207084032000, 4142712397824000, 22619209692119040000, 184572751087691366400000, 2146211949647675208499200000, 34253542716376896327647232000000, 727956289808441800755158974464000000, 20091593598712993700842387695206400000000
Offset: 0
A079484
a(n) = (2n-1)!! * (2n+1)!!, where the double factorial is A006882.
Original entry on oeis.org
1, 3, 45, 1575, 99225, 9823275, 1404728325, 273922023375, 69850115960625, 22561587455281875, 9002073394657468125, 4348001449619557104375, 2500100833531245335015625, 1687568062633590601135546875, 1321365793042101440689133203125
Offset: 0
G.f. = 1 + 3*x + 45*x^2 + 1575*x^3 + 99225*x^4 + 9823275*x^5 + ...
M(5) =
[1, 2, 3, 1, 5]
[1, 2, 2, 4, 5]
[1, 3, 3, 4, 5]
[4, 2, 3, 4, 5]
[1, 2, 3, 4, 5].
Integral_{x=0..oo} x^3*BesselK(1, sqrt(x)) = 1575*Pi. - _Olivier Gérard_, May 20 2009
- Miklós Bóna, A walk through combinatorics, World Scientific, 2006.
- Alois P. Heinz, Table of n, a(n) for n = 0..224
- Cyril Banderier, Markus Kuba, and Michael Wallner, Analytic Combinatorics of Composition schemes and phase transitions with mixed Poisson distributions, arXiv:2103.03751 [math.PR], 2021.
- Guo-Niu Han and Christian Krattenthaler, Rectangular Scott-type permanents, arXiv:math/0003072 [math.RA], 2000.
- Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], 17 Nov 2014.
- MathOverflow, Geometric / physical / probabilistic interpretations of Riemann zeta(n>1)?, answer by Tom Copeland posted in Aug 2021.
- Henryk Minc, On a conjecture of R. F. Scott (1881), Linear Algebra Appl., Vol. 28 (1979), pp. 141-153.
- Theodoros Theodoulidis, On the Closed-Form Expression of Carson’s Integral, Period. Polytech. Elec. Eng. Comp. Sci., Vol. 59, No. 1 (2015), pp. 26-29.
- Eric Weisstein's World of Mathematics, Struve function.
Diagonal elements of
A306364 in even-numbered rows.
-
I:=[1, 3]; [n le 2 select I[n] else (4*n^2-8*n+3)*Self(n-1): n in [1..20]]; // Vincenzo Librandi, Nov 18 2014
-
a:= n-> (d-> d(2*n-1)*d(2*n+1))(doublefactorial):
seq(a(n), n=0..15); # Alois P. Heinz, Jan 30 2013
# second Maple program:
A079484 := n-> LinearAlgebra[Determinant](Matrix(2*n+1, (i, j)-> `if`(i+j=2*n+1, j, i))): seq(A079484(n), n=0..14); # Rainer Rosenthal, Jun 18 2024
-
a[n_] := (2n - 1)!!*(2n + 1)!!; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Jan 30 2013 *)
-
/* Formula using the zeta function and a log integral:*/
L(n)= intnum(t=0, 1, log(1-1/t)^n);
Zetai(n)= -I*I^n*(2*Pi)^(n-1)/(n-1)*L(1-n);
a(m)={my(n=m+1);round(real(-I*2^(2*n-1)*Zetai(1/2-n)*L(-1/2+n)/(Zetai(-1/2+n)*L(1/2-n))))};
/* Gerry Martens, Mar 07 2011, adapted to offset 0 by Hugo Pfoertner, Jun 19 2024 */
-
{a(n) = if( n<0, -1 / self()(-1-n), (2*n + 1)! * (2*n)! / (n! * 2^n)^2 )}; /* Michael Somos, May 04 2017 */
-
{a(n) = if( n<0, -1 / self()(-1-n), my(m = 2*n + 1); m! * polcoeff( x / sqrt( 1 - x^2 + x * O(x^m) ), m))}; /* Michael Somos, May 04 2017 */
-
\\ using the Pochhammer symbol
a(n) = {my(P(x,k)=gamma(x+k)/gamma(x)); 4^n*round(P(1/2,n)*P(3/2,n))} \\ Hugo Pfoertner, Jun 20 2024
-
\\ Scott's (1881) method
a(n) = {my(m=2*n+1, X = polroots(x^m-1), Y = polroots(x^m+1), M = matrix(m, m, i, j, 1/(X[i]-Y[j]))); (-1)^n * round(2^m * real(matpermanent(M)))}; \\ Hugo Pfoertner, Jun 23 2024
Simpler description from Daniel Flath (deflath(AT)yahoo.com), Mar 05 2004
Showing 1-2 of 2 results.
Comments