cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A069894 Centered square numbers: a(n) = 4*n^2 + 4*n + 2.

Original entry on oeis.org

2, 10, 26, 50, 82, 122, 170, 226, 290, 362, 442, 530, 626, 730, 842, 962, 1090, 1226, 1370, 1522, 1682, 1850, 2026, 2210, 2402, 2602, 2810, 3026, 3250, 3482, 3722, 3970, 4226, 4490, 4762, 5042, 5330, 5626, 5930, 6242, 6562, 6890, 7226, 7570, 7922, 8282
Offset: 0

Views

Author

Glenn B. Cox (igloos_r_us(AT)canada.com), Apr 10 2002

Keywords

Comments

Any number may be substituted for y to yield similar sequences. The number set used determines values given (i.e., integer yields integer). All centered square integers in the set of integers may be found by this formula.
1/2 + 1/10 + 1/26 + ... = (Pi/4)*tanh(Pi/2) [Jolley]. - Gary W. Adamson, Dec 21 2006
For n > 0, a(n-1) is the number of triples (w, x, y) having all terms in {0, ..., n} and min(|w - x|, |x - y|) = 1. - Clark Kimberling, Jun 12 2012
Consider the primitive Pythagorean triples (x(n), y(n), z(n) = y(n) + 1) with n >= 0, and x(n) = 2*n + 1, y(n) = 2*n*(n + 1), z(n) = 2*n*(n + 1) + 1. The sequence, a(n), is 2*z(n). - George F. Johnson, Oct 22 2012
Ulam's spiral (SE corner). See the Wikipedia link. - Kival Ngaokrajang, Jul 25 2014
Conference matrix orders (A000952) of the form n-1 is a perfect square are all in this sequence. All values less than 1000 are conference matrices except for 226 which is still an open question (Balonin & Seberry 2014). - Colin Hall, Nov 21 2018
For n > 0, a(n-1) is the number of maximum number of regions into which the plane can be divided using n convex quadrilaterals. Related: A077588 A077591. - Keyang Li, Jun 17 2022

Examples

			If y = 3, then 81 + 144 = 225; if y = 4, then 12^2 + 16^2 = 20^2; 7^2 + 24^2 = 25^2 = 15^2 + 20^2.
		

References

  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 176.

Crossrefs

Programs

Formula

(y*(2*x + 1))^2 + (y*(2*x^2 + 2*x))^2 = (y*(2*x^2 + 2*x + 1))^2, where y = 2. If a^2 + b^2 = c^2, then c^2 = y^2*(4*x^4 + 8*x^3 + 8*x^2 + 4*x + 1). Also 2*A001844.
a(n) = (2*n + 1)^2 + 1. - Vladimir Joseph Stephan Orlovsky, Nov 10 2008 [Corrected by R. J. Mathar, Sep 16 2009]
a(n) = 8*n + a(n-1) for n > 0, a(0)=2. - Vincenzo Librandi, Aug 08 2010
From George F. Johnson, Oct 22 2012: (Start)
G.f.: 2*(1 + x)^2/(1 - x)^3, a(0) = 2, a(1) = 10.
a(n+1) = a(n) + 4 + 4*sqrt(a(n) - 1).
a(n-1) * a(n+1) = (a(n)-4)^2 + 16.
a(n) - 1 = (2*n+1)^2 = A016754(n) for n > 0.
(a(n+1) - a(n-1))/8 = sqrt(a(n) - 1).
a(n+1) = 2*a(n) - a(n-1) + 8 for n > 2, a(0)=2, a(1)=10, a(2)=26.
a(n+1) = 3*a(n) - 3*a(n-1) + a(n-2) for n > 3; a(0)=2, a(1)=10, a(2)=26, a(3)=50.
a(n) = A033996(n) + 2 = A002522(2n + 1).
a(n)^2 = A033996(n)^2 + A016825(n)^2. (End)
a(n) = A001105(n) + A001105(n+1). - Bruno Berselli, Jul 03 2017
E.g.f.: 2*(1 + 4*x + 2*x^2)*exp(x). - G. C. Greubel, Nov 21 2018
a(n) = A261327(4*n+2). - Paul Curtz, Dec 23 2021
a(n) = 2*A001844(n) = 4*A000217(n) + 2*A002061(n+1). - Klaus Purath, Aug 13 2025

Extensions

Edited by Robert G. Wilson v, Apr 11 2002
Offset corrected by Charles R Greathouse IV, Jul 25 2010

A084109 n is congruent to 1 (mod 4) and is not the sum of two squares.

Original entry on oeis.org

21, 33, 57, 69, 77, 93, 105, 129, 133, 141, 161, 165, 177, 189, 201, 209, 213, 217, 237, 249, 253, 273, 285, 297, 301, 309, 321, 329, 341, 345, 357, 381, 385, 393, 413, 417, 429, 437, 453, 465, 469, 473, 489, 497
Offset: 1

Views

Author

William P. Orrick, Jun 18 2003

Keywords

Comments

Alternatively, n is congruent to 1 (mod 4) with at least 2 distinct prime factors congruent to 3 (mod 4) in the squarefree part of n. - Comment corrected by Jean-Christophe Hervé, Oct 25 2015
Applications to the theory of optimal weighing designs and maximal determinants: An (n+1) X (n+1) conference matrix is impossible.
The upper bound of Ehlich/Wojtas on the determinant of a (0,1) matrix of order congruent to 1 (mod 4) cannot be achieved for n X n matrices.
The bound of Ehlich/Wojtas on the determinant of a (-1,1) matrix of order congruent to 2 (mod 4) cannot be achieved for (n+1) X (n+1) matrices.
Numbers with only odd prime factors, of which a strictly positive even number are raised to an odd power and congruent to 3 (mod 4). - Jean-Christophe Hervé, Oct 24 2015

Examples

			a(1) = 3*7 = 21, a(2) = 3*11 = 33, a(3) = 3*19 = 57, a(14) = 3^3*7 = 189.
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 56.

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all entries <= N
    S:= {seq(i,i=1..N,4)} minus
       {seq(seq(i^2+j^2, j=1..floor(sqrt(N-i^2)),2),i=0..floor(sqrt(N)),2)}:
    sort(convert(S,list)); # Robert Israel, Oct 25 2015
  • Mathematica
    a[m_] := Complement[Range[1, m, 4], Union[Flatten[Table[j^2+k^2, {j, 1, Sqrt[m], 2}, {k, 0, Sqrt[m], 2}]]]]
  • PARI
    is(n)=if(n%4!=1, return(0)); my(f=factor(n)); for(i=1, #f~, if(f[i, 1]%4==3 && f[i, 2]%2, return(1))); 0 \\ Charles R Greathouse IV, Jul 01 2016

A286636 Even numbers that are a sum of two squares plus 1.

Original entry on oeis.org

2, 6, 10, 14, 18, 26, 30, 38, 42, 46, 50, 54, 62, 66, 74, 82, 86, 90, 98, 102, 110, 114, 118, 122, 126, 138, 146, 150, 154, 158, 170, 174, 182, 186, 194, 198, 206, 222, 226, 230, 234, 242, 246, 258, 262, 266, 270, 278, 282, 290, 294, 306, 314, 318, 326, 334, 338, 350, 354, 362, 366, 370, 374, 378, 390, 398
Offset: 1

Views

Author

Jean-François Alcover, May 11 2017

Keywords

Comments

The first 13 terms coincide with A000952.
If the conjecture in A000952 is true, the two sequences are the same. - R. J. Mathar, May 18 2017
Numbers that are the sum of two centered square numbers (A001844). - Ilya Gutkovskiy, Jun 03 2017

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 400, 2], SquaresR[2, # - 1] != 0 &]

A061344 Numbers of form p^m + 1, p odd prime, m >= 1.

Original entry on oeis.org

4, 6, 8, 10, 12, 14, 18, 20, 24, 26, 28, 30, 32, 38, 42, 44, 48, 50, 54, 60, 62, 68, 72, 74, 80, 82, 84, 90, 98, 102, 104, 108, 110, 114, 122, 126, 128, 132, 138, 140, 150, 152, 158, 164, 168, 170, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240
Offset: 1

Views

Author

Hans Dieter Lueke (lueke(AT)ient.rwth-aachen.de), Jun 08 2001

Keywords

Comments

Lengths of almost-binary sequences with perfect odd-periodic autocorrelation function.
As J. Arndt points out, each element of this sequence leads to a conference matrix (cf. link to Wikipedia and A000952). - M. F. Hasler, Mar 14 2008

References

  • H. D. Lueke, Binary odd-periodic complementary sequences. IEEE Trans. Inform. Theory, 43, pp. 365-367, 1997.

Crossrefs

Equals A061345 + 1. Cf. A000952.

Programs

  • PARI
    A061344(n)= local(m=1,p); for(c=1,n, until( isprime(m+=2) || ispower(m,[null], && p) && isprime(p),); /*print(c," ",m+1)*/); m+1 \\ - M. F. Hasler, Mar 14 2008
    
  • Python
    from sympy import primepi, integer_nthroot
    def A061344(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0])-1 for k in range(1,x.bit_length())))
        return bisection(f,n+1,n+1)+1 # Chai Wah Wu, Feb 03 2025

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 12 2001
Edited by M. F. Hasler, Mar 14 2008

A123220 a(n)=the (1,1)-term of M^(n-1), where M=matrix(5,5, [3,-1,-1,-1,-1; 1,3,-1,-1,-1; 1,1,3,-1,-1; 1,1,1,3,-1; 1,1,1,1,3]).

Original entry on oeis.org

1, 3, 5, -9, -99, -297, 389, 8655, 46573, 122823, -120491, -3003393, -15885315, -40246281, 50400229, 1040606127, 5296630541, 12512952615, -22872751243, -368600380833, -1789336379619, -3926384911017, 9502037022725, 129579396089871, 602116408170541, 1219711972804743
Offset: 1

Views

Author

Roger L. Bagula, Oct 05 2006

Keywords

Crossrefs

Programs

  • Maple
    a[1]:=1:a[2]:=3:a[3]:=5:a[4]:=-9:a[5]:=-99: for n from 6 to 26 do a[n]:=15*a[n-1]-100*a[n-2]+360*a[n-3]-680*a[n-4]+528*a[n-5] od: seq(a[n],n=1..26); with(linalg): M[1]:=matrix(5,5,[3, -1, -1, -1, -1, 1, 3, -1, -1, -1, 1, 1, 3, -1, -1, 1, 1, 1, 3, -1, 1, 1, 1, 1, 3]): for n from 2 to 25 do M[n]:=multiply(M[1],M[n-1]) od: 1,seq(M[n][1,1],n=1..25);
  • Mathematica
    M = {{3, -1, -1, -1, -1}, {1, 3, -1, -1, -1}, {1, 1, 3, -1, -1}, {1, 1, 1, 3, -1}, {1, 1, 1, 1, 3}}; w[1] = {1, 0, 0, 0, 0}; w[n_] := w[n] = M.w[n - 1]; a = Table[w[n][[1]], {n, 1, 30}]

Formula

a(1) = 1; a(2) = 3; a(3) = 5; a(4) = -9; a(5) = -99; a(n) = 15a(n-1)-100a(n-2)+360a(n-3)-680a(n-4)+528a(n-5) for n>= 6. The minimal polynomial of M is x^5-15x^4+100x^3-360x^2+680x-528, the coefficients of which yield the coefficients of the recurrence relation.
O.g.f.: -x*(1-12*x+60*x^2-144*x^3+136*x^4)/((3*x-1)*(176*x^4-168*x^3+64*x^2-12*x+1)). - R. J. Mathar, Dec 05 2007

Extensions

Edited by N. J. A. Sloane, Oct 15 2006

A123222 Expansion of -x * (x-1) * (3*x^2-1) / (9*x^4-8*x^3+4*x-1).

Original entry on oeis.org

1, 3, 9, 31, 109, 391, 1397, 4995, 17833, 63675, 227313, 811543, 2897269, 10343647, 36928061, 131837979, 470678161, 1680380979, 5999172633, 21417807055, 76464283837, 272987183095, 974598829637, 3479441311347, 12422046335161
Offset: 1

Views

Author

Roger L. Bagula, Oct 05 2006

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(-x*(x-1)*(3*x^2-1)/(9*x^4-8*x^3+4*x-1))); // G. C. Greubel, Oct 12 2018
  • Maple
    seq(coeff(series(-x*(x-1)*(3*x^2-1)/(9*x^4-8*x^3+4*x-1),x,n+1), x, n), n = 1 .. 25); # Muniru A Asiru, Oct 13 2018
  • Mathematica
    LinearRecurrence[{4,0,-8,9},{1,3,9,31},30] (* Harvey P. Dale, Jul 26 2018 *)
  • PARI
    x='x+O('x^30); Vec(-x*(x-1)*(3*x^2-1)/(9*x^4-8*x^3+4*x-1)) \\ G. C. Greubel, Oct 12 2018
    

Formula

From Colin Barker, Oct 19 2012: (Start)
a(n) = 4*a(n-1) -8*a(n-3) +9*a(n-4).
G.f.: -x*(x-1)*(3*x^2-1)/(9*x^4-8*x^3+4*x-1). (End)

Extensions

Sequence edited by Joerg Arndt and Colin Barker, Oct 19 2012

A352348 Maximum determinant of n X n matrix composed of {-1, 0, 1} with pairwise orthogonal rows.

Original entry on oeis.org

1, 2, 2, 16, 16, 125, 128, 4096, 4096, 59049, 59049, 2985984, 2985984, 62748517
Offset: 1

Views

Author

Max Alekseyev, Mar 12 2022

Keywords

Comments

a(n) >= a(m)*a(n-m) for any m < n.
a(n) <= A003433(n), a bound achieved if the orthogonality requirement is dropped.
If there exists an order n Hadamard matrix, then a(n) = A003433(n) = n^(n/2).
For n == 2 (mod 4), if there exists an order n conference matrix (cf. A000952), then a(n) = (n-1)^(n/2). In particular, a(18) = 118587876497.

Crossrefs

Extensions

a(11)-a(14) from Max Alekseyev, May 20 2023
Showing 1-7 of 7 results.