A001060 a(n) = a(n-1) + a(n-2) with a(0)=2, a(1)=5. Sometimes called the Evangelist Sequence.
2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, 898, 1453, 2351, 3804, 6155, 9959, 16114, 26073, 42187, 68260, 110447, 178707, 289154, 467861, 757015, 1224876, 1981891, 3206767, 5188658, 8395425, 13584083, 21979508, 35563591, 57543099, 93106690, 150649789
Offset: 0
References
- R. V. Jean, Mathematical Approach to Pattern and Form in Plant Growth, Wiley, 1984. See p. 5.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Alfred Brousseau, Seeking the lost gold mine or exploring Fibonacci factorizations, Fib. Quart., 3 (1965), 129-130.
- Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972. See p. 52.
- Paul Coleman, An Introduction to the Music of Sofia Gubaidulina
- Tanya Khovanova, Recursive Sequences
- Casey Mongoven, Fibonacci Pitch Sequences. - _Ian Stewart_, Jun 07 2012
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Pan Graph
- Eric Weisstein's World of Mathematics, Vertex Cover
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
GAP
F:=Fibonacci;; List([0..40], n-> F(n+4) - F(n-1) ); # G. C. Greubel, Sep 19 2019
-
Magma
I:=[2,5]; [n le 2 select I[n] else Self(n-1)+Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 16 2012
-
Magma
a0:=2; a1:=5; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..35]]; // Bruno Berselli, Feb 12 2013
-
Maple
with(combinat): a:= n-> 2*fibonacci(n)+fibonacci(n+3): seq(a(n), n=0..40); # Zerinvary Lajos, Oct 05 2007 A001060:=-(2+3*z)/(-1+z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[Fibonacci[n+4] -Fibonacci[n-1], {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *) LinearRecurrence[{1,1}, {2,5}, 50] (* Vincenzo Librandi, Jan 16 2012 *) Table[Fibonacci[n+2] + LucasL[n+1], {n, 0, 40}] (* Eric W. Weisstein, Jun 30 2017 *) CoefficientList[Series[(2+3x)/(1-x-x^2), {x, 0, 40}], x] (* Eric W. Weisstein, Sep 22 2017 *)
-
PARI
a(n)=6*fibonacci(n)+fibonacci(n-3) \\ Charles R Greathouse IV, Jul 14 2017
-
PARI
a(n)=([0,1; 1,1]^n*[2;5])[1,1] \\ Charles R Greathouse IV, Jul 14 2017
-
Sage
f=fibonacci; [f(n+4) - f(n-1) for n in (0..40)] # G. C. Greubel, Sep 19 2019
Formula
a(n) = 2*Fibonacci(n) + Fibonacci(n+3). - Zerinvary Lajos, Oct 05 2007
a(n) = Fibonacci(n+4) - Fibonacci(n-1) for n >= 1. - Ian Stewart, Jun 07 2012
a(n) = Fibonacci(n) + 2*Fibonacci(n+2) = 5*Fibonacci(n) + 2*Fibonacci(n-1). The ratio r(n) := a(n+2)/a(n) satisfies the recurrence r(n+1) = (2*r(n) - 1)/(r(n) - 1). If M denotes the 2 X 2 matrix [2, -1; 1, -1] then [a(n+2), a(n)] = M^n[2, -1]. - Peter Bala, Dec 06 2013
a(n) = 6*F(n) + F(n-3), for F(n)=A000045. - J. M. Bergot, Jul 14 2017
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 4*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, May 26 2025
Extensions
More terms from James Sellers, May 04 2000
Comments