cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001060 a(n) = a(n-1) + a(n-2) with a(0)=2, a(1)=5. Sometimes called the Evangelist Sequence.

Original entry on oeis.org

2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, 898, 1453, 2351, 3804, 6155, 9959, 16114, 26073, 42187, 68260, 110447, 178707, 289154, 467861, 757015, 1224876, 1981891, 3206767, 5188658, 8395425, 13584083, 21979508, 35563591, 57543099, 93106690, 150649789
Offset: 0

Views

Author

Keywords

Comments

Literally the same as A013655(n+1), since A001060(-1) = A013655(0) = 3. - Eric W. Weisstein, Jun 30 2017
Used by the Sofia Gubaidulina and other composers. - Ian Stewart, Jun 07 2012
From a(2) on, sums of five consecutive Fibonacci numbers; the subset of primes is essentially in A153892. - R. J. Mathar, Mar 24 2010
Pisano period lengths: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60, ... (is this A001175?). - R. J. Mathar, Aug 10 2012
Also the number of independent vertex sets and vertex covers in the (n+1)-pan graph. - Eric W. Weisstein, Jun 30 2017
From Wajdi Maaloul, Jun 10 2022: (Start)
For n > 0, a(n) is the number of ways to tile the figure below with squares and dominoes (a strip of length n+1 that contains a vertical strip of height 3 in its second tile). For instance, a(4) is the number of ways to tile this figure (of length 5) with squares and dominoes.
_
|_|
||_______
|||_|||_|
(End)

References

  • R. V. Jean, Mathematical Approach to Pattern and Form in Plant Growth, Wiley, 1984. See p. 5.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from initial term, same as A013655.

Programs

  • GAP
    F:=Fibonacci;; List([0..40], n-> F(n+4) - F(n-1) ); # G. C. Greubel, Sep 19 2019
  • Magma
    I:=[2,5]; [n le 2 select I[n] else Self(n-1)+Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 16 2012
    
  • Magma
    a0:=2; a1:=5; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..35]]; // Bruno Berselli, Feb 12 2013
    
  • Maple
    with(combinat): a:= n-> 2*fibonacci(n)+fibonacci(n+3): seq(a(n), n=0..40); # Zerinvary Lajos, Oct 05 2007
    A001060:=-(2+3*z)/(-1+z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[Fibonacci[n+4] -Fibonacci[n-1], {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
    LinearRecurrence[{1,1}, {2,5}, 50] (* Vincenzo Librandi, Jan 16 2012 *)
    Table[Fibonacci[n+2] + LucasL[n+1], {n, 0, 40}] (* Eric W. Weisstein, Jun 30 2017 *)
    CoefficientList[Series[(2+3x)/(1-x-x^2), {x, 0, 40}], x] (* Eric W. Weisstein, Sep 22 2017 *)
  • PARI
    a(n)=6*fibonacci(n)+fibonacci(n-3) \\ Charles R Greathouse IV, Jul 14 2017
    
  • PARI
    a(n)=([0,1; 1,1]^n*[2;5])[1,1] \\ Charles R Greathouse IV, Jul 14 2017
    
  • Sage
    f=fibonacci; [f(n+4) - f(n-1) for n in (0..40)] # G. C. Greubel, Sep 19 2019
    

Formula

a(n) = 2*Fibonacci(n) + Fibonacci(n+3). - Zerinvary Lajos, Oct 05 2007
a(n) = Fibonacci(n+4) - Fibonacci(n-1) for n >= 1. - Ian Stewart, Jun 07 2012
a(n) = Fibonacci(n) + 2*Fibonacci(n+2) = 5*Fibonacci(n) + 2*Fibonacci(n-1). The ratio r(n) := a(n+2)/a(n) satisfies the recurrence r(n+1) = (2*r(n) - 1)/(r(n) - 1). If M denotes the 2 X 2 matrix [2, -1; 1, -1] then [a(n+2), a(n)] = M^n[2, -1]. - Peter Bala, Dec 06 2013
a(n) = 6*F(n) + F(n-3), for F(n)=A000045. - J. M. Bergot, Jul 14 2017
a(n) = -(-1)^n*A000285(-2-n) = -(-1)^n*A104449(-1-n) for all n in Z. - Michael Somos, Oct 28 2018
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 4*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, May 26 2025

Extensions

More terms from James Sellers, May 04 2000