A097571
Numbers n such that triangular number t(n) (see A000217) = n(n+1)/2 is a product of three consecutive integers.
Original entry on oeis.org
0, 3, 15, 20, 44, 608, 22736
Offset: 1
-
(Sqrt[8#+1]-1)/2&/@Select[Table[n(n+1)(n+2),{n,0,23000}],OddQ[Sqrt[8#+1]]&] (* Harvey P. Dale, Jan 12 2023 *)
A214838
Triangular numbers of the form k^2 + 2.
Original entry on oeis.org
3, 6, 66, 171, 2211, 5778, 75078, 196251, 2550411, 6666726, 86638866, 226472403, 2943171003, 7693394946, 99981175206, 261348955731, 3396416785971, 8878171099878, 115378189547778, 301596468440091, 3919462027838451, 10245401755863186, 133146330756959526, 348042063230908203
Offset: 1
2211 is in the sequence because 2211 = 47^2 + 2.
-
m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(-3*(x^4+x^3-14*x^2+x+1)/((x-1)*(x^2-6*x+1)*(x^2+6*x+1)))); // Bruno Berselli, Mar 08 2013
-
LinearRecurrence[{1, 34, -34, -1, 1}, {3, 6, 66, 171, 2211}, 25] (* Bruno Berselli, Mar 08 2013 *)
-
t[n]:=((5-2*sqrt(2))*(1+(-1)^n*sqrt(2))^(2*floor(n/2))+(5+2*sqrt(2))*(1-(-1)^n*sqrt(2))^(2*floor(n/2))-2)/4$
makelist(expand(t[n]*(t[n]+1)/2), n, 1, 25); /* Bruno Berselli, Mar 08 2013 */
-
for(n=1, 10^9, t=n*(n+1)/2; if(issquare(t-2), print1(t,", "))); \\ Joerg Arndt, Mar 08 2013
-
import math
for i in range(2, 1<<32):
t = i*(i+1)//2 - 2
sr = int(math.sqrt(t))
if sr*sr == t:
print(f'{sr:10} {i:10} {t+2}')
A165892
Triangular numbers of form n(n+2)(n+4).
Original entry on oeis.org
0, 15, 105, 2145, 32640, 73920, 1906128, 2299440, 7692030528
Offset: 1
Cf.
A001219 Triangular numbers of form a(a+1)(a+2).
-
TNQ[m_]:=IntegerQ[Sqrt[1+8*m]];Do[If[TNQ[m=n*(n+2)*(n+4)],Print[m]],{n,2*10^3}]
Select[Table[n(n+2)(n+4),{n,0,2000}],OddQ[Sqrt[8#+1]]&] (* Harvey P. Dale, Feb 07 2015 *)
Initial 0 added by
Zak Seidov, Oct 04 2009 at the suggestion of Alexander R. Povolotsky.
A227027
Triangular numbers representable as x!/y! with y < x-1.
Original entry on oeis.org
6, 120, 210, 990, 7140, 185136, 242556, 2162160, 8239770, 258474216, 279909630, 9508687656, 323015470680, 10973017315470, 372759573255306, 12662852473364940, 430164224521152660, 14612920781245825506, 496409142337836914550
Offset: 1
990 is in the sequence since 990 = 11!/8! = 11*10*9 is a ratio of factorials and 990 = (44)(44 + 1)/2 is a triangular number.
A165893
Numbers n with property that n(n+2)(n+4) is a triangular number.
Original entry on oeis.org
0, 1, 3, 11, 30, 40, 122, 130, 1972
Offset: 1
Cf.
A001219 Triangular numbers of form a(a+1)(a+2),
A165892 Triangular numbers of form a(a+2)(a+4).
Initial 0 added by
Zak Seidov, Oct 04 2009 at the suggestion of Alexander R. Povolotsky.
A165519
Integers k for which k(k+1)(k+2) is a triangular number.
Original entry on oeis.org
-2, -1, 0, 1, 4, 5, 9, 56, 636
Offset: 1
The third triangular number which is a product of three consecutive integers is 4*5*6=120=T(15), but 4 is the fifth integer k for which k(k+1)(k+2) is a triangular number, so a(5)=4.
- R. K. Guy, "Figurate Numbers", D3 in Unsolved Problems in Number Theory, 2nd ed., New York, Springer-Verlag, 1994, p. 148.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 19.
-
[-2,-1] cat [n: n in [0..1000] | IsSquare(8*n^3+24*n^2 +16*n+1)]; // Vincenzo Librandi, Nov 10 2014
-
select(x -> issqr(8*x^3 + 24*x^2 + 16*x+1), [$-2..1000]); # Robert Israel, Nov 07 2014
-
TriangularNumberQ[k_]:=If[IntegerQ[1/2 (Sqrt[1+8k]-1)],True,False]; Select[Range[750],TriangularNumberQ[ # (#+1)(#+2)] &]
With[{nos=Partition[Range[0,1000],3,1]},Transpose[Select[nos, IntegerQ[ (Sqrt[1+8Times@@#]-1)/2]&]][[1]]] (* Harvey P. Dale, Dec 25 2011 *)
-
isok(k) = ispolygonal(k*(k+1)*(k+2), 3); \\ Michel Marcus, Oct 31 2014
A226500
Triangular numbers representable as 3 * x^2.
Original entry on oeis.org
0, 3, 300, 29403, 2881200, 282328203, 27665282700, 2710915376403, 265642041604800, 26030209161894003, 2550694855824007500, 249942065661590841003, 24491771739980078410800, 2399943688452386093417403, 235169989696593857076494700, 23044259046577745607403063203
Offset: 1
Cf.
A029549 (triangular numbers representable as x^2 + x).
-
#include
#include
typedef unsigned long long U64;
U64 isTriangular(U64 a) { // input must be < 1ULL<<63
U64 r = sqrt(a*2);
return (r*(r+1) == a*2);
}
int main() {
for (U64 j, i = 0; (j=i*i*3) < (1ULL<<63); i++)
if (isTriangular(j)) printf("%llu, ", j);
return 0;
}
-
a[1]=0; a[2]=3; a[3]=300; a[n_] := a[n] = 99*(a[n-1] - a[n-2]) + a[n-3]; Array[a, 10] (* Giovanni Resta, Jun 09 2013 *)
Rest@ CoefficientList[Series[3 x^2 (1 + x)/((1 - x) (1 - 98 x + x^2)), {x, 0, 16}], x] (* or *)
3 LinearRecurrence[{99, -99, 1}, {0, 1, 100}, 16] (* Michael De Vlieger, Mar 03 2016, latter after Vincenzo Librandi at A108741 *)
Showing 1-7 of 7 results.
Comments