A001566 a(0) = 3; thereafter, a(n) = a(n-1)^2 - 2.
3, 7, 47, 2207, 4870847, 23725150497407, 562882766124611619513723647, 316837008400094222150776738483768236006420971486980607
Offset: 0
Examples
From _Cino Hilliard_, Sep 28 2008: (Start) Init x=1; x = (5/1 + 1)/2 = 3/1; x = (5/3 + 3)/2 = 7/3; x = ((5/7)/3 + 7/3)/2 = 47/21; x = ((5/47)/21 + 47/21)/2 = 2207/987; (2207/987)^2 = 5.000004106... (End)
References
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 397.
- E.-B. Escott, Note #1741, L'Intermédiaire des Mathématiciens, 8 (1901), page 13. - N. J. A. Sloane, Mar 02 2022
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 223.
- Édouard Lucas, Nouveaux théorèmes d'arithmétique supérieure, Comptes Rend., 83 (1876), 1286-1288.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 7.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..12
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Pierre Liardet and Pierre Stambul, Séries d'Engel et fractions continuées, Journal de Théorie des Nombres de Bordeaux 12 (2000), 37-68.
- Édouard Lucas, Nouveaux théorèmes d'arithmétique supérieure (annotated scanned copy)
- Édouard Lucas, The Theory of Simply Periodic Numerical Functions, Fibonacci Association, 1969. English translation of article "Théorie des Fonctions Numériques Simplement Périodiques, I", Amer. J. Math., 1 (1878), 184-240.
- M. Mendes France and A. J. van der Poorten, From geometry to Euler identities, Theoret. Comput. Sci., 65 (1989), 213-220.
- E. L. Roettger and H. C. Williams, Some Remarks Concerning the Lucas-Lehmer Primality Test, Journal of Integer Sequences, Vol. 28 (2025), Article 25.2.5. See p. 2.
- Chance Sanford, Infinite Series Involving Fibonacci Numbers Via Apéry-Like Formulae, arXiv:1603.03765 [math.NT], 2016.
- Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211. [Annotated scanned copy]
- Wikipedia, Engel Expansion.
- Roman Wituła and Damian Słota, delta-Fibonacci numbers, Applicable Analysis and Discrete Mathematics, Vol. 3, No. 2 (2009), pp. 310-329.
- Index entries for sequences of form a(n+1)=a(n)^2 + ....
Crossrefs
Lucas numbers (A000032) with subscripts that are powers of 2 greater than 1 (Herbert S. Wilf). Cf. A000045.
Cf. A058635. - Artur Jasinski, Oct 05 2008
Programs
-
Maple
a:= n-> simplify(2*ChebyshevT(2^n, 3/2), 'ChebyshevT'): seq(a(n), n=0..8);
-
Mathematica
NestList[#^2-2&,3,10] (* Harvey P. Dale, Dec 17 2014 *) Table[LucasL[2^n], {n, 1, 8}] (* Amiram Eldar, Oct 22 2020 *)
-
Maxima
a[0]:3$ a[n]:=a[n-1]^2-2$ A001566(n):=a[n]$ makelist(A001566(n),n,0,7); /* Martin Ettl, Nov 12 2012 */
-
PARI
{a(n) = if( n<1, 3*(n==0), a(n-1)^2 - 2)}; /* Michael Somos, Mar 14 2004 */
-
PARI
g(n,p) = x=1;for(j=1,p,x=(n/x+x)/2;print1(numerator(x)",")); g(5,8) \\ Cino Hilliard, Sep 28 2008
-
PARI
{a(n) = my(w = quadgen(5)); if( n<0, 0, n++; imag( (2*w - 1) * w^2^n ))}; /* Michael Somos, Nov 30 2014 */
-
PARI
{a(n) = my(y = x^2-x-1); if( n<0, 0, n++; for(i=1, n, y = polgraeffe(y)); -polcoeff(y, 1))}; /* Michael Somos, Nov 30 2014 */
Formula
a(n) = Fibonacci(2^(n+2))/Fibonacci(2^(n+1)) = A058635(n+2)/A058635(n+1). - Len Smiley, May 08 2000, and Artur Jasinski, Oct 05 2008
a(n) = ceiling(c^(2^n)) where c = (3+sqrt(5))/2 = tau^2 is the largest root of x^2-3*x+1=0. - Benoit Cloitre, Dec 03 2002
a(n) = round(G^(2^n)) where G is the golden ratio (A001622). - Artur Jasinski, Sep 22 2008
a(n) = (G^(2^(n+1))-(1-G)^(2^(n+1)))/((G^(2^n))-(1-G)^(2^n)) = G^(2^n)+(1-G)^(2^n) = G^(2^n)+(-G)^(-2^n) where G is the golden ratio. - Artur Jasinski, Oct 05 2008
a(n) = 2*cosh(2^(n+1)*arccosh(sqrt(5)/2)). - Artur Jasinski, Oct 09 2008
a(n) = Fibonacci(2^(n+1)-1) + Fibonacci(2^(n+1)+1). (3-sqrt(5))/2 = 1/3 + 1/(3*7) + 1/(3*7*47) + 1/(3*7*47*2207) + ... (E. Lucas). - Philippe Deléham, Apr 21 2009
a(n)*(a(n+1)-1)/2 = A023039(2^n). - M. F. Hasler, Sep 27 2009
For n >= 1, a(n) = 2 + Product_{i=0..n-1} (a(i) + 2). - Vladimir Shevelev, Nov 28 2010
a(n) = 2*T(2^n,3/2) where T(n,x) is the Chebyshev polynomial of the first kind. - Leonid Bedratyuk, Mar 17 2011
From Peter Bala, Oct 31 2012: (Start)
Engel expansion of 1/2*(3 - sqrt(5)). Thus 1/2*(3 - sqrt(5)) = 1/3 + 1/(3*7) + 1/(3*7*47) + ... as noted above by Deleham. See Liardet and Stambul.
sqrt(5)/4 = Product_{n>=0} (1 - 1/a(n)).
sqrt(5) = Product_{n>=0} (1 + 2/a(n)). (End)
a(n) - 1 = A145502(n+1). - Peter Bala, Nov 11 2012
a(n) == 2 (mod 9), for n > 1. - Ivan N. Ianakiev, Dec 25 2013
From Amiram Eldar, Oct 22 2020: (Start)
a(n) = A000032(2^(n+1)).
Sum_{k>=0} 1/a(k) = -1 + A338304. (End)
a(n) = (A000045(m+2^(n+2))+A000045(m))/A000045(m+2^(n+1)) for any m>=0. - Alexander Burstein, Apr 10 2021
a(n) = 2*cos(2^n*arccos(3/2)). - Peter Luschny, Oct 12 2022
a(n) == -1 ( mod 2^(n+2) ). - Peter Bala, Nov 07 2022
a(n) = 5*Fibonacci(2^n)^2+2 = 5*A058635(n)^2+2, for n>0. - Jianglin Luo, Sep 21 2023
Sum_{n>=0} a(n)/Fibonacci(2^(n+2)) = A094874 (Sanford, 2016). - Amiram Eldar, Mar 01 2024
Comments