A001791 a(n) = binomial coefficient C(2n, n-1).
0, 1, 4, 15, 56, 210, 792, 3003, 11440, 43758, 167960, 646646, 2496144, 9657700, 37442160, 145422675, 565722720, 2203961430, 8597496600, 33578000610, 131282408400, 513791607420, 2012616400080, 7890371113950, 30957699535776, 121548660036300, 477551179875952
Offset: 0
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- Cornelius Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 517.
- R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe and Matuszka Tamás, Table of n, a(n) for n = 0..1200 (terms n = 0..200 from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, Enumeration of multi-rooted plane trees, arXiv:2301.09765 [math.CO], 2023.
- Jean-Luc Baril and Sergey Kirgizov, The pure descent statistic on permutations, Discrete Mathematics, Vol. 340, No. 10 (2017), pp. 2550-2558; preprint, 2016.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
- Norman Biggs, Some odd graph theory, Second International Conference on Combinatorial Mathematics, Annals of the New York Academy of Sciences 319 (1979), 71-81.
- Miklós Bóna, Surprising Symmetries in Objects Counted by Catalan Numbers, Electronic J. Combin., 19 (2012), P62, eq. (6).
- Libor Caha and Daniel Nagaj, The pair-flip model: a very entangled translationally invariant spin chain, arXiv:1805.07168 [quant-ph], 2018.
- Jelena Đokic, A short note on the order of the double reduced 2-factor transfer digraph for rectangular grid graphs, arXiv:2308.04155 [math.CO], 2023.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 21.
- Guo-Niu Han, Enumeration of Standard Puzzles.
- Guo-Niu Han, Enumeration of Standard Puzzles. [Cached copy]
- A. Ivanyi, L. Lucz, T. Matuszka, and S. Pirzada, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 260-288.
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq., Vol. 17 (2014), Article 14.3.5.
- Christian Krattenthaler and Daniel Yaqubi, Some determinants of path generating functions, II, Advances in Applied Mathematics, Vol. 101 (2018), pp. 232-265; arXiv preprint, arXiv:1802.05990 [math.CO], 2018.
- Cornelius Lanczos, Applied Analysis. (Annotated scans of selected pages)
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Vol. 15 (2012), Article 12.3.3. - From _N. J. A. Sloane_, Sep 16 2012
- Mark Shattuck, Enumeration of non-crossing partitions according to subwords with repeated letters, arXiv:2303.06300 [math.CO], 2023.
- Zhi Lan Wang, Tautological integrals on symmetric products of curves, Acta Mathematica Sinica, English Series, Vol. 32, No. 8 (2016), pp. 901-910; arXiv preprint, arXiv:1506.08405 [math.AG], 2015-2016; alternative link.
- Jian Zhou, Fat and Thin Emergent Geometries of Hermitian One-Matrix Models, arXiv:1810.03883 [math-ph], 2018.
Crossrefs
Programs
-
GAP
List([0..30],n->Binomial(2*n,n-1)); # Muniru A Asiru, Aug 09 2018
-
Magma
[Binomial(2*n, n-1): n in [0..30]]; // Vincenzo Librandi, Apr 20 2015
-
Mathematica
Table[Binomial[2n,n-1],{n,0,30}] (* Harvey P. Dale, Jul 12 2012 *) CoefficientList[ Series[(1 - 2x - Sqrt[1 - 4x])/(2x*Sqrt[1 - 4x]), {x, 0, 26}], x] (* Robert G. Wilson v, Aug 10 2018 *)
-
Maxima
A001791(n):=binomial(2*n,n-1)$ makelist(A001791(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
a(n)=if(n<1,0,(2*n)!/(n+1)!/(n-1)!)
Formula
a(n) = n*A000108(n).
G.f.: x*(d/dx)c(x) where c(x) = Catalan g.f. - Wolfdieter Lang
Convolution of A001700 (central binomial of odd order) and A000108 (Catalan): a(n+1) = Sum_{k=0..n} C(k)*binomial(2*(n-k)+1, n-k), C(k): Catalan. - Wolfdieter Lang
E.g.f.: exp(2x) * I_1(2x), where I_1 is Bessel function. - Michael Somos, Sep 08 2002
a(n) = Sum_{k=0..n} C(n, k)*C(n, k+1). - Paul Barry, May 15 2003
a(n) = Sum_{i=1..n} binomial(i+n-1, n).
G.f.: (1-2x-sqrt(1-4x))/(2x*sqrt(1-4x)). - Emeric Deutsch, Dec 05 2003
a(n) = A092956/(n!). - Amarnath Murthy, Jun 16 2004
a(n) = binomial(2n,n) - A000108(n). - Paul Barry, Apr 21 2005
a(n) = (1/(2*Pi))*Integral_{x=0..4} (x^n*(x-2)/sqrt(x(4-x))) is the moment sequence representation. - Paul Barry, Jan 11 2007
Row sums of triangle A132812 starting (1, 4, 15, 56, 210, ...). - Gary W. Adamson, Sep 01 2007
Starting (1, 4, 15, 56, 210, ...) gives the binomial transform of A025566 starting (1, 3, 8, 22, 61, 171, ...). - Gary W. Adamson, Sep 01 2007
For n >= 1, a(2^n) = 2^(n+1)*A001795(2^(n-1)). - Vladimir Shevelev, Sep 05 2010
D-finite with recurrence: (n-1)*(n+1)*a(n) = 2*n*(2n-1)*a(n-1). - R. J. Mathar, Dec 17 2011
From Sergei N. Gladkovskii, Jul 07 2012: (Start)
G.f.: -1/(2*x) - G(0) where G(k) = 1 - 1/(2*x - 8*x^3*(2*k+1)/(4*x^2*(2*k+1)- (k+1)/G(k+1))); (continued fraction, 3rd kind, 3-step);
E.g.f.: BesselI(1,2*x)*exp(2*x) = x*G(0) where G(k) = 1 + 2*x*(4*k+3)/((2*k+1)*(2*k+3) - x*(2*k+1)*(2*k+3)*(4*k+5)/(x*(4*k+5) + 2*(k+1)*(k+2)/G(k+1))); (continued fraction, 3rd kind, 3-step).
(End)
G.f.: c(x)^3/(2-c(x)) where c(x) is the g.f. for A000108. - Cheyne Homberger, May 05 2014
G.f.: z*C(z)^2/(1-2*z*C(z)), where C(z) is the g.f. of Catalan numbers. - José Luis Ramírez Ramírez, Apr 19 2015
G.f.: x*2F1(3/2,2;3;4x). - R. J. Mathar, Aug 09 2015
a(n) = Sum_{i=1..n} binomial(2*i-2,i-1)*binomial(2*(n-i+1),n-i+2)/(n-i+1). - Vladimir Kruchinin, Sep 07 2015
L.g.f.: 1/(1 - x/(1 - x/(1 - x/(1 - x/(1 - x/(1 - ...)))))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 10 2017
Sum_{n>=1} 1/a(n) = 1/3 + 5*Pi/(9*sqrt(3)). - Amiram Eldar, Dec 04 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/5 + 14*sqrt(5)*log(phi)/25, where log(phi) = A002390. - Amiram Eldar, Feb 20 2021
a(n) = Product_{i=1..(n - 1)} (((4*i + 6)*i + 2)/((i + 2)*i)), for n>=1. - Neven Sajko, Oct 10 2021
a(n) = 2^(2*n)*gamma(n + 1/2)/(sqrt(Pi)*gamma(n)*(n+1)) for n > 0, and a(0) = lim_{n->0} a(n). - Karol A. Penson, Apr 24 2025
Comments