A001924 Apply partial sum operator twice to Fibonacci numbers.
0, 1, 3, 7, 14, 26, 46, 79, 133, 221, 364, 596, 972, 1581, 2567, 4163, 6746, 10926, 17690, 28635, 46345, 75001, 121368, 196392, 317784, 514201, 832011, 1346239, 2178278, 3524546, 5702854, 9227431, 14930317, 24157781, 39088132, 63245948, 102334116, 165580101
Offset: 0
Examples
a(5) = 26 because there are 31 nonempty subsets of {1,2,3,4,5} but 5 of these have successive elements that differ by 3 or more: {1,4}, {1,5}, {2,5}, {1,2,5}, {1,4,5}. - _Geoffrey Critzer_, Feb 17 2012 From _John M. Campbell_, Feb 10 2013: (Start) There are a(5) = 26 bit strings with the pattern 00 and without the pattern 011 of length 5+1: 000000, 000001, 000010, 000100, 000101, 001000, 001001, 001010, 010000, 010001, 010010, 010100, 100000, 100001, 100010, 100100, 100101, 101000, 101001, 110000, 110001, 110010, 110100, 111000, 111001, 111100. (End)
References
- J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- Bader AlBdaiwi, On the Number of Cycles in a Graph, arXiv preprint arXiv:1603.01807 [cs.DM], 2016.
- Jean-Luc Baril and Jean-Marcel Pallo, Motzkin subposet and Motzkin geodesics in Tamari lattices, 2013.
- Ning-Ning Cao and Feng-Zhen Zhao, Some Properties of Hyperfibonacci and Hyperlucas Numbers, J. Int. Seq. 13 (2010) # 10.8.8.
- Hung Viet Chu, Various Sequences from Counting Subsets, arXiv:2005.10081 [math.CO], 2020.
- Hung Viet Chu, Partial Sums of the Fibonacci Sequence, arXiv:2106.03659 [math.CO], 2021.
- Ligia Loretta Cristea, Ivica Martinjak, and Igor Urbiha, Hyperfibonacci Sequences and Polytopic Numbers, arXiv:1606.06228 [math.CO], 2016.
- Emrah Kiliç and Pantelimon Stănică, Generating matrices for weighted sums of second order linear recurrences, JIS 12 (2009) 09.2.7.
- Wolfdieter Lang, Problem B-858, Fibonacci Quarterly, 36 (1998), 373-374, Solution, ibid. 37 (1999) 183-184.
- Candice A. Marshall, Construction of Pseudo-Involutions in the Riordan Group, Dissertation, Morgan State University, 2017.
- Igor Pak, Boris Shapiro, Ilya Smirnov, and Ken-ichi Yoshida, Hilbert-Kunz multiplicity of quadrics via the Ehrhart theory, Stockholm Univ. (Sweden, 2025). See p. 6.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23. [Annotated scanned copy]
- Stacey Wagner, Enumerating Alternating Permutations with One Alternating Descent, DePaul Discoveries: Vol. 2: Iss. 1, Article 2.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Crossrefs
Programs
-
GAP
List([0..40], n-> Fibonacci(n+4) -n-3); # G. C. Greubel, Jul 08 2019
-
Haskell
a001924 n = a001924_list !! n a001924_list = drop 3 $ zipWith (-) (tail a000045_list) [0..] -- Reinhard Zumkeller, Nov 17 2013
-
Magma
[Fibonacci(n+4)-(n+3): n in [0..40]]; // Vincenzo Librandi, Jun 23 2016
-
Maple
A001924:=-1/(z**2+z-1)/(z-1)**2; # Conjectured by Simon Plouffe in his 1992 dissertation. ## a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <1|-1|-2|3>>^n. <<0, 1, 3, 7>>)[1, 1]: seq(a(n), n=0..40); # Alois P. Heinz, Oct 05 2012
-
Mathematica
a[n_]:= Fibonacci[n+4] -3-n; Array[a, 40, 0] (* Robert G. Wilson v *) LinearRecurrence[{3,-2,-1,1},{0,1,3,7},40] (* Harvey P. Dale, Jan 24 2015 *) Nest[Accumulate,Fibonacci[Range[0,40]],2] (* Harvey P. Dale, Jun 15 2016 *)
-
PARI
a(n)=fibonacci(n+4)-n-3 \\ Charles R Greathouse IV, Feb 24 2011
-
Sage
[fibonacci(n+4) -n-3 for n in (0..40)] # G. C. Greubel, Jul 08 2019
Formula
From Wolfdieter Lang: (Start)
G.f.: x/((1-x-x^2)*(1-x)^2).
Convolution of natural numbers n >= 1 with Fibonacci numbers F(k).
a(n) = Fibonacci(n+4) - (3+n). (End)
From Henry Bottomley, Jan 03 2003: (Start)
a(n) = a(n-1) + a(n-2) + n = a(n-1) + A000071(n+2).
a(n) = Sum_{k=0..n} Sum_{i=0..k} Fibonacci(i). - Benoit Cloitre, Jan 26 2003
a(n) = (sqrt(5)/2 + 1/2)^n*(7*sqrt(5)/10 + 3/2) + (3/2 - 7*sqrt(5)/10)*(sqrt(5)/2 - 1/2)^n*(-1)^n - n - 3. - Paul Barry, Mar 26 2003
a(n) = Sum_{k=0..n} Fibonacci(k)*(n-k). - Benoit Cloitre, Jun 07 2004
a(n) - a(n-1) = A101220(1,1,n). - Ross La Haye, May 31 2006
F(n) + a(n-3) = A133640(n). - Gary W. Adamson, Sep 19 2007
a(n) = A077880(-3-n) = 2*a(n-1) - a(n-3) + 1. - Michael Somos, Dec 31 2012
INVERT transform is A122595. PSUM transform is A014162. PSUMSIGN transform is A129696. BINOMIAL transform of A039834 with 0,1 prepended is this sequence. - Michael Somos, Dec 31 2012
a(n) = A228074(n+1,3) for n > 1. - Reinhard Zumkeller, Aug 15 2013
a(n) = Sum_{k=0..n} Sum_{i=0..n} i * C(n-k,k-i). - Wesley Ivan Hurt, Sep 21 2017
E.g.f.: exp(x/2)*(15*cosh(sqrt(5)*x/2) + 7*sqrt(5)*sinh(sqrt(5)*x/2))/5 - exp(x)*(3 + x). - Stefano Spezia, Jun 25 2022
Extensions
Description improved by N. J. A. Sloane, Jan 01 1997
Comments