A002203 Companion Pell numbers: a(n) = 2*a(n-1) + a(n-2), a(0) = a(1) = 2.
2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, 39202, 94642, 228486, 551614, 1331714, 3215042, 7761798, 18738638, 45239074, 109216786, 263672646, 636562078, 1536796802, 3710155682, 8957108166, 21624372014, 52205852194, 126036076402, 304278004998
Offset: 0
References
- Paul Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 76.
- M. R. Bacon and C. K. Cook, Some properties of Oresme numbers and convolutions ..., Fib. Q., 62:3 (2024), 233-240.
- Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 43.
- Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer-Verlag, NY, 2000, p. 3.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 46, 61.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Gerald L. Alexanderson, Problem B-102, Fib. Quart., 4 (1966), 373.
- Dorin Andrica and Ovidiu Bagdasar, Recurrent Sequences: Key Results, Applications, and Problems, Springer (2020), p. 39.
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Counting families of generalized balancing numbers, The Australasian Journal of Combinatorics (2020) Vol. 77, Part 3, 318-325.
- Hacène Belbachir, Amine Belkhir, and Ihab-Eddin Djellas, Permanent of Toeplitz-Hessenberg Matrices with Generalized Fibonacci and Lucas entries, Applications and Applied Mathematics: An International Journal (AAM 2022), Vol. 17, Iss. 2, Art. 15, 558-570.
- Pooja Bhadouria, Deepika Jhala, and Bijendra Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence L_{2,n}.
- M. Bicknell, A Primer on the Pell Sequence and related sequences, Fibonacci Quarterly, Vol. 13, No. 4, 1975, pp. 345-349.
- Abdullah Çağman, Repdigits as sums of three Half-companion Pell numbers, Miskolc Mathematical Notes (Hungary, 2023) Vol. 24, No. 2, 687-697, MMN-4143.
- Kwang-Wu Chen and Yu-Ren Pan, Greatest Common Divisors of Shifted Horadam Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.5.8.
- Robert Dougherty-Bliss, Experimental Methods in Number Theory and Combinatorics, Ph. D. Dissertation, Rutgers Univ. (2024). See p. 38.
- Sergio Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675. [Wayback Machine link]
- Bakir Farhi, Summation of Certain Infinite Lucas-Related Series, J. Int. Seq., Vol. 22 (2019), Article 19.1.6.
- Bernadette Faye, and Florian Luca, Pell Numbers whose Euler Function is a Pell Number, arXiv:1508.05714 [math.NT], 2015.
- M. Cetin Firengiz and A. Dil, Generalized Euler-Seidel method for second order recurrence relations, Notes on Number Theory and Discrete Mathematics, Vol. 20, 2014, No. 4, 21-32.
- Sela Fried, Even-up words and their variants, arXiv:2505.14196 [math.CO], 2025. See p. 6.
- Taras Goy and Mark Shattuck, Determinants of Toeplitz-Hessenberg Matrices with Generalized Leonardo Number Entries, Ann. Math. Silesianae (2023). See p. 3.
- Verner E. Hoggatt, Jr., and Gerald L. Alexanderson, Sums of Partition Sets in Generalized Pascal Triangles I, The Fibonacci Quarterly, Vol. 14, No. 2 (1976), pp. 117-125.
- Refik Keskin and Olcay Karaatli, Some New Properties of Balancing Numbers and Square Triangular Numbers, Journal of Integer Sequences, Vol. 15 (2012), Article 12.1.4.
- Tanya Khovanova, Recursive Sequences.
- Edouard Lucas, Théorie des Fonctions Numériques Simplement Périodiques, Amer. J. Math., 1 (1878), 184-240.
- Edouard Lucas, Théorie des Fonctions Numériques Simplement Périodiques, I", Amer. J. Math., 1 (1878), 184-240 and 289-321.
- Edouard Lucas, The Theory of Simply Periodic Numerical Functions, Fibonacci Association, 1969. English translation of article "Théorie des Fonctions Numériques Simplement Périodiques, I", Amer. J. Math., 1 (1878), 184-240.
- aBa Mbirika, Janeè Schrader, and Jürgen Spilker, Pell and associated Pell braid sequences as GCDs of sums of k consecutive Pell, balancing, and related numbers, arXiv:2301.05758 [math.NT], 2023. See also J. Int. Seq. (2023) Vol. 26, Art. 23.6.4.
- Ezgi Kantarcı Oguz, Cem Yalım Özel, and Mohan Ravichandran, Chainlink Polytopes, Séminaire Lotharingien de Combinatoire, Proc. 35th Conf. Formal Power Series and Alg. Comb. (Davis, 2023) Vol. 89B, Art. #67.
- Hideyuki Ohtsuka, Problem 12090, The American Mathematical Monthly, Vol. 126, No. 2 (2019), p. 180; A Pell-Lucas Computation of Pi, Solution to Problem 12090 by M. Vowe, ibid., Vol. 127, No. 7 (2020), pp. 666-667.
- Neşe Ömür, Gökhan Soydan, Yücel Türker Ulutaş, and Yusuf Doğru, On triangles with coordinates of vertices from the terms of the sequences {U_kn} and {V_kn}, Matematičke Znanosti, Vol. 24 = 542(2020), 15-27.
- Arzu Özkoç, Some algebraic identities on quadra Fibona-Pell integer sequence, Advances in Difference Equations, 2015, 2015:148.
- Serge Perrine, About the diophantine equation z^2 = 32y^2 - 16, SCIREA Journal of Mathematics (2019) Vol. 4, Issue 5, 126-139.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Mihai Prunescu, On other two representations of the C-recursive integer sequences by terms in modular arithmetic, arXiv:2406.06436 [math.NT], 2024. See p. 16.
- Mihai Prunescu and Lorenzo Sauras-Altuzarra, On the representation of C-recursive integer sequences by arithmetic terms, arXiv:2405.04083 [math.LO], 2024. See p. 15.
- Mihai Prunescu and Joseph M. Shunia, On modular representations of C-recursive integer sequences, arXiv:2502.16928 [math.NT], 2025. See p. 5.
- Mario Raso, Integer Sequences in Cryptography: A New Generalized Family and its Application, Ph. D. Thesis, Sapienza University of Rome (Italy 2025). See p. 41.
- Salah Eddine Rihane and Alain Togbé, On the intersection of Padovan, Perrin sequences and Pell, Pell-Lucas sequences, Annales Mathematicae et Informaticae (2021).
- Yüksel Soykan, On Summing Formulas For Generalized Fibonacci and Gaussian Generalized Fibonacci Numbers, Advances in Research (2019) Vol. 20, No. 2, 1-15, Article AIR.51824.
- Yüksal Soykan, On Summing Formulas for Horadam Numbers, Asian Journal of Advanced Research and Reports (2020) Vol. 8, Issue 1, 45-61.
- Yüksel Soykan, Generalized Fibonacci Numbers: Sum Formulas, Journal of Advances in Mathematics and Computer Science (2020) Vol. 35, No. 1, 89-104.
- Yüksel Soykan, Closed Formulas for the Sums of Squares of Generalized Fibonacci Numbers, Asian Journal of Advanced Research and Reports (2020) Vol. 9, No. 1, 23-39, Article no. AJARR.55441.
- Yüksel Soykan, A Study on Generalized Fibonacci Numbers: Sum Formulas Sum_{k=0..n} k * x^k * W_k^3 and Sum_{k=1..n} k * x^k W_-k^3 for the Cubes of Terms, Earthline Journal of Mathematical Sciences (2020) Vol. 4, No. 2, 297-331.
- Yüksel Soykan, On Generalized (r, s)-numbers, Int. J. Adv. Appl. Math. and Mech. (2020) Vol. 8, No. 1, 1-14.
- Yüksel Soykan, Mehmet Gümüş, and Melih Göcen, A Study On Dual Hyperbolic Generalized Pell Numbers, Zonguldak Bülent Ecevit University (Zonguldak, Turkey, 2019).
- Robin James Spivey, Close encounters of the golden and silver ratios, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 3, 170-184.
- Anetta Szynal-Liana, Iwona Włoch, and Mirosław Liana, Generalized commutative quaternion polynomials of the Fibonacci type, Annales Math. Sect. A, Univ. Mariae Curie-Skłodowska (Poland 2022) Vol. 76, No. 2, 33-44.
- Elif Tan, Luka Podrug, and Vesna Iršič Chenoweth, Horadam-Lucas Cubes, Axioms (2024) Vol. 13, No. 12, 837.
- Ahmet Tekcan, Merve Tayat, and Meltem E. Özbek, The diophantine equation 8x^2-y^2+8x(1+t)+(2t+1)^2=0 and t-balancing numbers, ISRN Combinatorics, Volume 2014, Article ID 897834, 5 pages.
- Eric Weisstein's World of Mathematics, Independent Edge Set.
- Eric Weisstein's World of Mathematics, Matching.
- Eric Weisstein's World of Mathematics, Pell Number.
- Eric Weisstein's World of Mathematics, Sunlet Graph.
- Wikipedia, Lucas sequence.
- Zongzhen Xie, Hanpeng Gao, and Zhaoyong Huang, Tilting modules over Auslander algebras of Nakayama algebras with radical cube zero, Nanjing University (China, 2020).
- Fatih Yılmaz and Mustafa Özkan, On the Generalized Gaussian Fibonacci Numbers and Horadam Hybrid Numbers: A Unified Approach, Axioms (2022) Vol. 11, No. 6, 255.
- Abdelmoumène Zekiri, Farid Bencherif, and Rachid Boumahdi, Generalization of an Identity of Apostol, J. Int. Seq., Vol. 21 (2018), Article 18.5.1.
- Index entries for linear recurrences with constant coefficients, signature (2,1).
- Index entries for Lucas sequences.
- Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2).
Crossrefs
Programs
-
Haskell
a002203 n = a002203_list !! n a002203_list = 2 : 2 : zipWith (+) (map (* 2) $ tail a002203_list) a002203_list -- Reinhard Zumkeller, Oct 03 2011
-
Magma
I:=[2,2]; [n le 2 select I[n] else 2*Self(n-1)+Self(n-2): n in [1..35]]; // Vincenzo Librandi, Aug 15 2015
-
Maple
A002203 := proc(n) option remember; if n <= 1 then 2; else 2*procname(n-1)+procname(n-2) ; end if; end proc: # R. J. Mathar, May 11 2013 # second Maple program: a:= n-> (<<0|1>, <1|2>>^n. <<2, 2>>)[1, 1]: seq(a(n), n=0..30); # Alois P. Heinz, Jan 26 2018 a := n -> 2*I^n*ChebyshevT(n, -I): seq(simplify(a(n)), n = 0..30); # Peter Luschny, Dec 03 2023
-
Mathematica
Table[LucasL[n, 2], {n, 0, 30}] (* Zerinvary Lajos, Jul 09 2009 *) LinearRecurrence[{2, 1}, {2, 2}, 50] (* Vincenzo Librandi, Aug 15 2015 *) Table[(1 - Sqrt[2])^n + (1 + Sqrt[2])^n, {n, 0, 20}] // Expand (* Eric W. Weisstein, Oct 03 2017 *) LucasL[Range[0, 20], 2] (* Eric W. Weisstein, Oct 03 2017 *) CoefficientList[Series[(2 (1 - x))/(1 - 2 x - x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Oct 03 2017 *)
-
PARI
first(m)=my(v=vector(m));v[1]=2;v[2]=2;for(i=3,m,v[i]=2*v[i-1]+v[i-2]);v; \\ Anders Hellström, Aug 15 2015
-
PARI
a(n) = my(w=quadgen(8)); (1+w)^n + (1-w)^n; \\ Michel Marcus, Jun 17 2021
-
Sage
[lucas_number2(n,2,-1) for n in range(0, 29)] # Zerinvary Lajos, Apr 30 2009
Formula
a(n) = 2 * A001333(n).
a(n) = A100227(n) + 1.
O.g.f.: (2 - 2*x)/(1 - 2*x - x^2). - Simon Plouffe in his 1992 dissertation
a(n) = (1 + sqrt(2))^n + (1 - sqrt(2))^n. - Mario Catalani (mario.catalani(AT)unito.it), Mar 17 2003
From Miklos Kristof, Mar 19 2007: (Start)
Given F(n) = A000129(n), the Pell numbers, and L(n) = a(n), then:
L(n+m) + (-1)^m*L(n-m) = L(n)*L(m).
L(n+m) - (-1)^m*L(n-m) = 8*F(n)*F(m).
L(n+m+k) + (-1)^k*L(n+m-k) + (-1)^m*(L(n-m+k) + (-1)^k*L(n-m-k)) = L(n)*L(m)*L(k).
L(n+m+k) - (-1)^k*L(n+m-k) + (-1)^m*(L(n-m+k) - (-1)^k*L(n-m-k)) = 8*F(n)*L(m)*F(k).
L(n+m+k) + (-1)^k*L(n+m-k) - (-1)^m*(L(n-m+k) + (-1)^k*L(n-m-k)) = 8*F(n)*F(m)*L(k).
L(n+m+k) - (-1)^k*L(n+m-k) - (-1)^m*(L(n-m+k) - (-1)^k*L(n-m-k)) = 8*L(n)*F(m)*F(k).
(End)
G.f.: G(0), where G(k) = 1 + 1/(1 - x*(2*k - 1)/(x*(2*k + 1) - 1/G(k + 1))); (continued fraction). - Sergei N. Gladkovskii, Jun 19 2013
a(n) = [x^n] ( (1 + 2*x + sqrt(1 + 4*x + 8*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
From Kai Wang, Jan 14 2020: (Start)
a(n)^2 - a(n + 1) * a(n - 1) = (-1)^(n) * 8.
a(n)^2 - a(n + r) * a(n - r) = (-1)^(n - r - 1) * 8 * A000129(r)^2.
a(m) * a(n + 1) - a(m + 1) * a(n) = (-1)^(n - 1) * 8 * A000129(m - n).
(End)
E.g.f.: 2*exp(x)*cosh(sqrt(2)*x). - Stefano Spezia, Jan 15 2020
a(n) = (-1)^n * (a(n)^3 - a(3*n))/3. - Greg Dresden, Jun 16 2021
a(n) = (a(n+2) + a(n-2))/6 for n >= 2. - Greg Dresden, Jun 23 2021
From Greg Dresden and Tongjia Rao, Sep 09 2021: (Start)
a(3n+2)/a(3n-1) = [14, ..., 14, -3] with (n+1) 14's.
a(3n+3)/a( 3n ) = [14, ..., 14, 7] with n 14's.
a(3n+4)/a(3n+1) = [14, ..., 14, 17] with n 14's. (End)
From Peter Bala, Nov 16 2022: (Start)
a(n) = trace([2, 1; 1, 0]^n) for n >= 1.
The Gauss congruences hold: a(n*p^k) == a(n*p^(k-1)) (mod p^k) for all positive integers n and k and all primes p.
a(3^n) == A271222(n) (mod 3^n). (End)
Sum_{n>=1} arctan(2/a(n))*arctan(2/a(n+1)) = Pi^2/32 (A244854) (Ohtsuka, 2019). - Amiram Eldar, Feb 11 2024
From Peter Bala, Jul 09 2025: (Start)
The following series telescope (Cf. A000032):
For k >= 1, Sum_{n >= 1} (-1)^((k+1)*(n+1)) * a(2*n*k)/(a((2*n-1)*k)*a((2*n+1)*k)) = 1/a(k)^2.
For positive even k, Sum_{n >= 1} 1/(a(k*n) - (a(k) + 2)/a(k*n)) = 1/(a(k) - 2) and
Sum_{n >= 1} (-1)^(n+1)/(a(k*n) + (a(k) - 2)/a(k*n)) = 1/(a(k) + 2).
For positive odd k, Sum_{n >= 1} 1/(a(k*n) - (-1)^n*(a(2*k) + 2)/a(k*n)) = (a(k) + 2)/(2*(a(2*k) - 2)) and
Sum_{n >= 1} (-1)^(n+1)/(a(k*n) - (-1)^n*(a(2*k) + 2)/a(k*n)) = (a(k) - 2)/(2*(a(2*k) - 2)). (End)
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Dec 03 2001
Comments