A002275 Repunits: (10^n - 1)/9. Often denoted by R_n.
0, 1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111, 1111111111, 11111111111, 111111111111, 1111111111111, 11111111111111, 111111111111111, 1111111111111111, 11111111111111111, 111111111111111111, 1111111111111111111, 11111111111111111111
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, New York: Dover Publications, 1964, chapter XI, p. 83.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 235-237.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 197-198.
- Samuel Yates, Peculiar Properties of Repunits, J. Recr. Math. 2, 139-146, 1969.
- Samuel Yates, Prime Divisors of Repunits, J. Recr. Math. 8, 33-38, 1975.
Links
- David Wasserman, Table of n, a(n) for n = 0..1000
- Eudes Antonio Costa and Fernando Soares Carvalho, On repunit polynomials sequence, Braz. Elec. J. Math. (2024). See pp. 2, 15.
- Eudes Antonio Costa, Douglas Catulio Santos, Paula Maria Machado Cruz Catarino, and Elen Viviani Pereira Spreafico, On Gaussian and Quaternion Repunit Numbers, Rev. Mat. UFOP (Brazil, 2024) Vol. 2. See p. 2.
- Eudes Antonio Costa, Paula Maria Machado Cruz Catarino, and Douglas Catulio Santos, A Study of the Symmetry of the Tricomplex Repunit Sequence with Repunit Sequence, Symmetry (2024) Vol. 17, No. 1, 28.
- Dmytro S. Inosov and Emil Vlasák, Cryptarithmically unique terms in integer sequences, arXiv:2410.21427 [math.NT], 2024. See pp. 3, 18.
- Makoto Kamada, Factorizations of 11...11 (Repunit).
- Douglas Catulio Santos, Eudes Antonio Costa, and Paula Maria Machado Cruz Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See p. 4.
- W. M. Snyder, Factoring Repunits, Am. Math. Monthly, Vol. 89, No. 7 (1982), pp. 462-466.
- Amelia Carolina Sparavigna, On Repunits, Politecnico di Torino (Italy, 2019).
- Amelia Carolina Sparavigna, Composition Operations of Generalized Entropies Applied to the Study of Numbers, International Journal of Sciences (2019) Vol. 8, No. 4, 87-92.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Eric Weisstein's World of Mathematics, Repunit.
- Eric Weisstein's World of Mathematics, Demlo Number.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton.
- Wikipedia, Repunit.
- Amin Witno, A Family of Sequences Generating Smith Numbers, J. Int. Seq. 16 (2013) #13.4.6.
- Stephen Wolfram, A New Kind of Science.
- Samuel Yates, The Mystique of Repunits, Math. Mag., Vol. 51, No. 1 (1978), pp. 22-28.
- Index to Elementary Cellular Automata.
- Index entries for 10-automatic sequences.
- Index entries for sequences related to cellular automata.
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
- Index entries for "core" sequences.
Crossrefs
Cf. A000042, A002276, A002277, A002278, A002279, A002280, A002281, A002282, A002283, A004023, A046053, A059988, A065444, A075412, A075415, A083278, A095370, A102380, A125134, A178635, A204845, A204846, A204847, A204848, A206244.
Programs
-
Haskell
a002275 = (`div` 9) . subtract 1 . (10 ^) a002275_list = iterate ((+ 1) . (* 10)) 0 -- Reinhard Zumkeller, Jul 05 2013, Feb 05 2012
-
Magma
[(10^n-1)/9: n in [0..25]]; // Vincenzo Librandi, Nov 06 2014
-
Maple
seq((10^k - 1)/9, k=0..30); # Wesley Ivan Hurt, Sep 28 2013
-
Mathematica
Table[(10^n - 1)/9, {n, 0, 19}] (* Alonso del Arte, Nov 15 2011 *) Join[{0},Table[FromDigits[PadRight[{},n,1]],{n,20}]] (* Harvey P. Dale, Mar 04 2012 *)
-
Maxima
a[0]:0$ a[1]:1$ a[n]:=11*a[n-1]-10*a[n-2]$ A002275(n):=a[n]$ makelist(A002275(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
a(n)=(10^n-1)/9; \\ Michael B. Porter, Oct 26 2009
-
PARI
my(x='x+O('x^30)); concat(0, Vec(x/((1-10*x)*(1-x)))) \\ Altug Alkan, Apr 10 2016
-
Python
print([(10**n-1)//9 for n in range(100)]) # Michael S. Branicky, Apr 30 2022
-
Sage
[lucas_number1(n, 11, 10) for n in range(21)] # Zerinvary Lajos, Apr 27 2009
Formula
a(n) = 10*a(n-1) + 1, a(0)=0.
a(n) = A000042(n) for n >= 1.
Second binomial transform of Jacobsthal trisection A001045(3n)/3 (A015565). - Paul Barry, Mar 24 2004
G.f.: x/((1-10*x)*(1-x)). Regarded as base b numbers, g.f. x/((1-b*x)*(1-x)). - Franklin T. Adams-Watters, Jun 15 2006
a(n) = 11*a(n-1) - 10*a(n-2), a(0)=0, a(1)=1. - Lekraj Beedassy, Jun 07 2006
a(n) = A125118(n,9) for n>8. - Reinhard Zumkeller, Nov 21 2006
a(n) = a(n-1) + 10^(n-1) with a(0)=0. - Vincenzo Librandi, Jul 22 2010
E.g.f.: (exp(9*x) - 1)*exp(x)/9. - Ilya Gutkovskiy, May 11 2016
a(n) = Sum_{k=0..n-1} 10^k. - Torlach Rush, Nov 03 2020
Sum_{n>=1} 1/a(n) = A065444. - Amiram Eldar, Nov 13 2020
From Elmo R. Oliveira, Aug 02 2025: (Start)
Comments