A002452 a(n) = (9^n - 1)/8.
0, 1, 10, 91, 820, 7381, 66430, 597871, 5380840, 48427561, 435848050, 3922632451, 35303692060, 317733228541, 2859599056870, 25736391511831, 231627523606480, 2084647712458321, 18761829412124890, 168856464709124011, 1519708182382116100, 13677373641439044901, 123096362772951404110
Offset: 0
Examples
a(4) = (9^4 - 1)/8 = 820 = 1111_9 = (1/2) * 40 * 41 is the ((3^4 - 1)/2)-th = 40th triangular number. - _Bernard Schott_, Apr 23 2017
References
- A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 36.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
- Kival Ngaokrajang, Illustration of initial terms
- Vladimir Pletser, Congruence conditions on the number of terms in sums of consecutive squared integers equal to squared integers, arXiv:1409.7969 [math.NT], 2014.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- D. C. Santos, E. A. Costa, and P. M. M. C. Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See p. 4.
- A. G. Shannon, Letter to N. J. A. Sloane, Dec 06 1974.
- M. Ward, Note on divisibility sequences, Bull. Amer. Math. Soc., 42 (1936), 843-845.
- Eric Weisstein's World of Mathematics, Repunit.
- Index entries for linear recurrences with constant coefficients, signature (10,-9).
Crossrefs
Programs
-
Magma
[(9^n - 1)/8 : n in [0..25]]; // Vincenzo Librandi, Jun 01 2011
-
Maple
A002452 := 1/(9*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation
-
Mathematica
(9^# & /@ Range[0, 18] // Accumulate) (* Ant King, Jan 06 2011 *) LinearRecurrence[{10,-9},{0,1},30] (* Harvey P. Dale, Sep 23 2018 *)
-
Maxima
A002452(n):=floor((9^n-1)/8)$ makelist(A002452(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
a(n)=9^n>>3 \\ Charles R Greathouse IV, Jul 25 2011
Formula
From Philippe Deléham, Mar 13 2004: (Start)
a(n) = 9*a(n-1) + 1; a(1) = 1.
G.f.: x / ((1-x)*(1-9*x)). (End)
a(n) = 10*a(n-1) - 9*a(n-2). - Ant King, Jan 05 2011
Sum_{n>0} a(n)*(-1)^(n+1)*x^(2*n+1)/(2*n+1)! = (1/6)*sin(x)^3. - Vladimir Kruchinin, Sep 30 2012
a(n) = 10^(n-1) + 2 - A217094(n-1). - Hieronymus Fischer, Jan 30 2013
a(n) = det(|v(i+2,j+1)|, 1 <= i,j <= n-1), where v(n,k) are central factorial numbers of the first kind with odd indices (A008956) and n > 0. - Mircea Merca, Apr 06 2013
a(n) = Sum_{k=0..n-1} 9^k. - Doug Bell, May 26 2017
E.g.f.: exp(5*x)*sinh(4*x)/4. - Stefano Spezia, Mar 11 2023
Extensions
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004
Offset changed from 1 to 0 and added 0 by Vincenzo Librandi, Jun 01 2011
Comments