cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A002464 Hertzsprung's problem: ways to arrange n non-attacking kings on an n X n board, with 1 in each row and column. Also number of permutations of length n without rising or falling successions.

Original entry on oeis.org

1, 1, 0, 0, 2, 14, 90, 646, 5242, 47622, 479306, 5296790, 63779034, 831283558, 11661506218, 175203184374, 2806878055610, 47767457130566, 860568917787402, 16362838542699862, 327460573946510746, 6880329406055690790, 151436547414562736234, 3484423186862152966838
Offset: 0

Views

Author

Keywords

Comments

Permutations of 12...n such that none of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).
This sequence is also the solution to the 'toast problem' devised by my house-mates and me as math undergraduates some 27 years ago: Given a toast rack with n slots, how many ways can the slices be removed so that no two consecutive slices are removed from adjacent slots? - David Jones (david.jones(AT)zetnet.co.uk), Oct 24 2003
This sequence was also derived by the late D. P. Robbins. - David Callan, Nov 04 2003
Another interpretation: number of permutations of n containing exactly n different patterns of size n-1. - Olivier Gérard, Nov 05 2007
Number of directed Hamiltonian paths in the complement of the n-path graph P_n. - Andrew Howroyd, Mar 16 2016
There is an obvious connection between the two descriptions of the sequence: Replace the chessboard with a n X n zero-matrix and each king with "1". This matrix will transform the vector (1,2,..,n) into a permutation such that adjacent components do not differ by 1. The reverse is also true: Any such transformation is a solution of the king problem. - Gerhard Kirchner, Feb 10 2017
A formula of Poulet (1919) relates this to A326411: a(n) = T(n+2,1)/(n+2) + 2*T(n+1,1)/(n+1) + T(n,1)/n, where T(i,j) = A326411(i,j). - N. J. A. Sloane, Mar 08 2022
For the number of these permutations without fixed points see A288208. - Wolfdieter Lang, May 22 2025

Examples

			a(4) = 2: 2413, 3142.
a(5) = 14 corresponds to these 14 permutations of length 5: 13524, 14253, 24135, 24153, 25314, 31425, 31524, 35142, 35241, 41352, 42513, 42531, 52413, 53142.
		

References

  • W. Ahrens, Mathematische Unterhaltungen und Spiele. Teubner, Leipzig, Vol. 1, 3rd ed., 1921; Vol. 2, 2nd ed., 1918. See Vol. 1, p. 271.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.40.

Crossrefs

Equals 2*A001266(n) for n >= 2. A diagonal of A001100. Cf. A010028.
Column k=1 of A333706.

Programs

  • Maple
    A002464 := proc(n) options remember; if n <= 1 then 1 elif n <= 3 then 0 else (n+1)*A002464(n-1)-(n-2)*A002464(n-2)-(n-5)*A002464(n-3)+(n-3)*A002464(n-4); fi; end;
  • Mathematica
    (* computation from the permutation class *)
    g[ L_ ] := Apply[ And, Map[ #>1&, L ] ]; f[ n_ ] := Length[ Select[ Permutations[ Range[ n ] ], g[ Rest[ Abs[ RotateRight[ # ]-# ] ] ]& ] ]; Table[ f[ n ], {n, 1, 8} ] (* Erich Friedman *)
    (* or direct computation of terms *)
    Table[n! + Sum[(-1)^r*(n-r)!*Sum[2^c *Binomial[r-1,c-1] *Binomial[n-r,c], {c,1,r}], {r,1,n-1}], {n,1,30}] (* Vaclav Kotesovec, Mar 28 2011 *)
    (* or from g.f. *)
    M = 30; CoefficientList[Sum[n!*x^n*(1-x)^n/(1+x)^n, {n, 0, M}] + O[x]^M, x] (* Jean-François Alcover, Jul 07 2015 *)
    CoefficientList[Series[Exp[(1 + x)/((-1 + x) x)] (1 + x) Gamma[0, (1 + x)/((-1 + x) x)]/((-1 + x) x), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 11 2018 *)
    RecurrenceTable[{a[n] == (n + 1) a[n - 1] - (n - 2) a[n - 2] - (n - 5) a[n - 3] + (n - 3) a[n - 4], a[0] == a[1] == 1, a[2] == a[3] == 0}, a, {n, 0, 20}] (* Eric W. Weisstein, Apr 11 2018 *)
  • PARI
    N = 66;  x = 'x + O('x^N);
    gf = sum(n=0,N, n!*(x*(1-x))^n/(1+x)^n );
    v = Vec(gf) /* Joerg Arndt, Apr 17 2013 */
    
  • Python
    from math import factorial, comb
    def A002464(n): return factorial(n)+sum((-1 if k&1 else 1)*factorial(n-k)*sum(comb(k-1,t-1)*comb(n-k,t)<Chai Wah Wu, Feb 19 2024

Formula

If n = 0 or 1 then a(n) = 1; if n = 2 or 3 then a(n) = 0; otherwise a(n) = (n+1)*a(n-1) - (n-2)*a(n-2) - (n-5)*a(n-3) + (n-3)*a(n-4).
G.f.: Sum_{n >= 0} n!*x^n*(1-x)^n/(1+x)^n. - Philippe Flajolet
G.f.: e^((1 + x)/((-1 + x) * x)) * (1 + x) * Gamma(0, (1 + x)/((-1 + x) * x))/((-1 + x) * x). - Eric W. Weisstein, May 16 2014
Let S_{n, k} = number of permutations of 12...n with exactly k rising or falling successions. Let S[n](t) = Sum_{k >= 0} S_{n, k}*t^k. Then S[0] = 1; S[1] = 1; S[2] = 2*t; S[3] = 4*t+2*t^2; for n >= 4, S[n] = (n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4].
a(n) = n! + Sum_{k=1..n} (-1)^k * Sum_{t=1..k} binomial(k-1,t-1) * binomial(n-k,t) * 2^t * (n-k)!. - Max Alekseyev, Jan 29 2006
a(n) = Sum_{k=0..n} (-1)^(n-k)*k!*b(n,k), where g.f. for b(n,k) is (1-x)/(1-(1+y)*x-y*x^2), cf. A035607. - Vladeta Jovovic, Nov 24 2007
Asymptotic (M. Abramson and W. Moser, 1966): a(n)/n! ~ (1 - 2/n^2 - 10/(3*n^3) - 6/n^4 - 154/(15*n^5) - 88/(9*n^6) + 5336/(105*n^7) + 1612/(3*n^8) + 2098234/(567*n^9) + 36500686/(1575*n^10) + ... )/e^2. - Vaclav Kotesovec, Apr 19 2011, extended Dec 27 2020
Conjecture: a(n) = Sum_{k=1..n} k!*A080246(n-1, k-1) for n > 0. - John Keith, Nov 02 2020
Proof: a(n) = Sum_{k=1..n} k!*A080246(n-1, k-1) for n > 0. Since a(n) = Sum_{k=0..n-1} (-1)^k*(n-k)!*Sum_{i=0..k} binomial(n-k,i)*binomial(n-1-i,k-i) (M. Abramson and W. Moser, 1966) which is Sum_{k=1..n} (-1)^(k-1)(n-k+1)!*Sum{i=0..k-1} binomial(n-k+1,i)*binomial(n-1-i,k-1-i) = Sum_{k=1..n} (-1)^(n-k)(k!)*Sum_{i=0..n-k} binomial(k,i)*binomial(n-1-i,n-k-i) = k!*A080246(n-1, k-1) as (-1)^(n-k) = (-1)^(n+k) and binomial(n-1-i,k-1) = binomial(n-1-i,n-k-i). - Alex McGaw, Apr 13 2023
a(n+2) = (n+2)! - Sum_{j=0..n} (-1)^j*(n+1-j)!*2*A104698(n, j), for n >= 0 (Abramson and Moser, p. 1250, (III), N_0(n+2), last line, rewritten). - Wolfdieter Lang, May 14 2025

Extensions

Merged with the old A001100, Aug 19 2003
Kaplansky reference from David Callan, Oct 29 2003
Tauraso reference from Parthasarathy Nambi, Dec 21 2006
Edited by Jon E. Schoenfield, Jan 31 2015

A242522 Number of cyclic arrangements of S={1,2,...,n} such that the difference between any two neighbors is at least 2.

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 33, 245, 2053, 19137, 196705, 2212037, 27029085, 356723177, 5058388153, 76712450925, 1239124984693, 21241164552785, 385159565775633, 7365975246680597, 148182892455224845, 3128251523599365177, 69149857480654157545, 1597343462243140957757
Offset: 1

Views

Author

Stanislav Sykora, May 27 2014

Keywords

Comments

a(n)=NPC(n;S;P) is the count of all neighbor-property cycles for a specific set S of n elements and a specific pair-property P. For more details, see the link and A242519.
Number of Hamiltonian cycles in the complement of P_n, where P_n is the n-path graph. - Andrew Howroyd, Mar 15 2016
a(n) also agrees with the number of optimal fundamentally distinct radio labelings of the wheel graph on (n+1) nodes for n = 5 up to at least n = 10 (and likely all larger n). - Eric W. Weisstein, Jan 12 2021
a(n) also agrees with the number of optimal fundamentally distinct radio labelings of the n-dipyramidal graph for n = 5 up to at least n = 9 (and likely all larger n). - Eric W. Weisstein, Jan 14 2021

Examples

			The 5 cycles of length n=6 having this property are {1,3,5,2,4,6}, {1,3,5,2,6,4}, {1,3,6,4,2,5}, {1,4,2,5,3,6}, {1,4,2,6,3,5}.
		

Crossrefs

Programs

  • Mathematica
    a[n_ /; n < 5] = 0; a[5] = 1; a[6] = 5; a[n_] := a[n] = n a[n - 1] - (n - 5) a[n - 2] - (n - 4) a[n - 3] + (n - 4) a[n - 4]; Array[a, 24] (* Jean-François Alcover, Oct 07 2017 *)
    Join[{0, 0}, RecurrenceTable[{a[n] == n a[n - 1] - (n - 5) a[n - 2] - (n - 4) a[n - 3] + (n - 4) a[n - 4], a[3] == a[4] == 0, a[5] == 1, a[6] == 5}, a, {n, 20}]] (* Eric W. Weisstein, Apr 12 2018 *)

Formula

a(n) = A002493(n)/(2*n), n>1. - Andrew Woods, Dec 08 2014
a(n) = Sum_{k=1..n} (-1)^(n-k)*k!*A102413(n,k) / (2*n), n>2. - Andrew Woods after Vladeta Jovovic, Dec 08 2014
a(n) = (n-1)!/2 + sum_{i=1..n-1} ((-1)^i * (n-i-1)! * sum_{j=0..i-1} (2^j * C(i-1,j) * C(n-i,j+1))), for n>=5. - Andrew Woods, Jan 08 2015
a(n) = n a(n-1) - (n-5) a(n-2) - (n-4) a(n-3) + (n-4) a(n-4), for n>6. - Jean-François Alcover, Oct 07 2017

A137774 Number of ways to place n nonattacking empresses on an n X n board.

Original entry on oeis.org

1, 2, 2, 8, 20, 94, 438, 2766, 19480, 163058, 1546726, 16598282, 197708058, 2586423174, 36769177348, 563504645310, 9248221393974, 161670971937362, 2996936692836754, 58689061747521430, 1210222434323163704, 26204614054454840842, 594313769819021397534, 14086979362268860896282
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 27 2011

Keywords

Comments

An empress moves like a rook and a knight.

Crossrefs

Formula

Asymptotics (Vaclav Kotesovec, Jan 26 2011): a(n)/n! -> 1/e^4.
General asymptotic formulas for number of ways to place n nonattacking pieces rook + leaper[r,s] on an n X n board:
a(n)/n! -> 1/e^2 for 0
a(n)/n! -> 1/e^4 for 0

Extensions

Terms a(16)-a(17) from Vaclav Kotesovec, Feb 06 2011
Terms a(18)-a(19) from Wolfram Schubert, Jul 24 2011
Terms a(20)-a(24) (computed by Wolfram Schubert), Vaclav Kotesovec, Aug 25 2012

A338838 Triangle read by rows: T(n,k) is the number of permutations of k elements from [1..n] where adjacent values cannot be consecutive modulo n.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 0, 0, 1, 4, 4, 0, 0, 1, 5, 10, 10, 10, 10, 1, 6, 18, 36, 60, 84, 60, 1, 7, 28, 84, 210, 434, 630, 462, 1, 8, 40, 160, 544, 1552, 3440, 5168, 3920, 1, 9, 54, 270, 1170, 4338, 13158, 30366, 47178, 36954, 1, 10, 70, 420, 2220, 10220, 39780, 125220, 298060, 476220, 382740
Offset: 0

Author

Xiangyu Chen, Nov 11 2020

Keywords

Comments

In a convex n-gon, the number of paths using k-1 diagonals and k non-repeated vertices.

Examples

			n\k  0    1    2    3    4    5    6    7    8
0    1
1    1    1
2    1    2    0
3    1    3    0    0
4    1    4    4    0    0
5    1    5    10   10   10   10
6    1    6    18   36   60   84   60
7    1    7    28   84   210  434  630  462
8    1    8    40   160  544  1552 3440 5168 3920
		

Crossrefs

Right diagonal is A002493.

Programs

  • PARI
    isokd(d, n) = my(x=abs(d)); (x==1) || (x==(n-1));
    isok(s, p, n) = {my(w = vector(#s, k, s[p[k]])); for (i=1, #s-1, if (isokd(w[i+1] - w[i], n) == 1, return (0))); return (1);}
    T(n, k) = {my(nb = 0); forsubset([n, k], s, for(i=1, k!, if (isok(s, numtoperm(k, i), n), nb++););); nb;} \\ Michel Marcus, Nov 21 2020

Formula

T(n,k) = n*(A338526(n-1,k-1)-S(n-1,k-1)) for k>0 except T(2,2)=0, T(n,0)=1, where S(n,k) = 2*A338526(n-1,k-1)-S(n-1,k-1) for k>0, S(n,0)=0.

A384921 Number of permutations [p_1, p_2, ..., p_n], for n >= 1, with |p_{i+1} - p_i| >= 2, for i = 1..n-1, and |p_n - p_1| = 0 or 1.

Original entry on oeis.org

1, 0, 0, 2, 4, 30, 184, 1322, 10668, 96566, 969280, 10690146, 128527348, 1673257262, 23451539784, 352079626010, 5637207651004, 95886993887142, 1726775043225808, 32821564079286866, 656647922936247300, 13793480376190668446
Offset: 1

Author

Wolfdieter Lang, Jun 17 2025

Keywords

Comments

This sequence gives the number of the so-called king permutations, for n >= 1, counted in A002464, that satisfy the additional restriction |p_n - p_1| = 0 or 1.

Examples

			n=1: The permutation is [1].
n=4: The two king permutations are [2, 4, 1, 3] and its reversal [3, 1, 4, 2].
n=5: The four permutations are [2,,4, 1, 5, 3], [3, 1, 5, 2, 4] and their reversals [3, 5, 1, 4, 2], [4, 2, 5, 1, 3]. See III of the Abramson and Moser link, p. 1254.
n=6: The 30 permutations are (in short cut version): 146352, 153642, 246153, 251463, 264153, 315264, 351624, 352614, 361524, 362514, 413625, 426135, 426315, 524136, 531426, and their reversals.
		

Crossrefs

Formula

a(n) = A002464(n) - A002493(n), for n >= 2, but A002493(1) = 1, not 0, as it is here, if instead of A002493 the definition |p_{i+1} - p_i| >= 2, for i = 1..n, for n >= 1, and p_{n+1} = p_1 is used; hence a(1) = 1, not 0.
a(n) = 2*Sum_{k=0..floor((n-2)/2)} A002464(n - (2*k+1)), for n >= 3, and a(1) = 1, a(2) = 0. (Compare this with the formula given by Vladeta Jovovic in A002493, Nov 24 2007.)
Showing 1-5 of 5 results.