cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A124682 a(n) = A002861(n) + A000081(n).

Original entry on oeis.org

2, 3, 6, 13, 29, 71, 173, 444, 1148, 3030, 8059, 21715, 58836, 160687, 441083, 1217134, 3372386, 9380948, 26180962, 73292358, 205731862, 578922864, 1632707684, 4614098810, 13064064882, 37052720050, 105257568244, 299452309023, 853094139960, 2433439189419
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2006

Keywords

Crossrefs

See A126285.

A173761 Partial sums of A002861.

Original entry on oeis.org

1, 3, 7, 16, 36, 87, 212, 541, 1403, 3714, 9931, 26880, 73230, 200944, 554216, 1535969, 4273508, 11933297, 33425583, 93891713, 264401743, 746269426, 2110694255, 5981068081, 16977958318, 48271041858
Offset: 1

Views

Author

Jonathan Vos Post, Feb 23 2010

Keywords

Comments

Partial sums of number of connected functions (or mapping patterns) on n unlabeled points, or number of rings and branches with n edges. The subsequence of primes in this partial sum begins: 3, 7, 9931, 1535969, 5981068081.

Examples

			a(26) = 1 + 2 + 4 + 9 + 20 + 51 + 125 + 329 + 862 + 2311 + 6217 + 16949 + 46350 + 127714 + 353272 + 981753 + 2737539 + 7659789 + 21492286 + 60466130 + 170510030 + 481867683 + 1364424829 + 3870373826 + 10996890237 + 31293083540.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] A002861(i).

A000081 Number of unlabeled rooted trees with n nodes (or connected functions with a fixed point).

Original entry on oeis.org

0, 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847, 1721159, 4688676, 12826228, 35221832, 97055181, 268282855, 743724984, 2067174645, 5759636510, 16083734329, 45007066269, 126186554308, 354426847597, 997171512998
Offset: 0

Views

Author

Keywords

Comments

Also, number of ways of arranging n-1 nonoverlapping circles: e.g., there are 4 ways to arrange 3 circles, as represented by ((O)), (OO), (O)O, OOO, also see example. (Of course the rules here are different from the usual counting parentheses problems - compare A000108, A001190, A001699.) See Sloane's link for a proof and Vogeler's link for illustration of a(7) as arrangement of 6 circles.
Take a string of n x's and insert n-1 ^'s and n-1 pairs of parentheses in all possible legal ways (cf. A003018). Sequence gives number of distinct functions. The single node tree is "x". Making a node f2 a child of f1 represents f1^f2. Since (f1^f2)^f3 is just f1^(f2*f3) we can think of it as f1 raised to both f2 and f3, that is, f1 with f2 and f3 as children. E.g., for n=4 the distinct functions are ((x^x)^x)^x; (x^(x^x))^x; x^((x^x)^x); x^(x^(x^x)). - W. Edwin Clark and Russ Cox, Apr 29 2003; corrected by Keith Briggs, Nov 14 2005
Also, number of connected multigraphs of order n without cycles except for one loop. - Washington Bomfim, Sep 04 2010
Also, number of planted trees with n+1 nodes.
Also called "Polya trees" by Genitrini (2016). - N. J. A. Sloane, Mar 24 2017

Examples

			G.f. = x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 20*x^6 + 48*x^7 + 115*x^8 + ...
From _Joerg Arndt_, Jun 29 2014: (Start)
The a(6) = 20 trees with 6 nodes have the following level sequences (with level of root = 0) and parenthesis words:
  01:  [ 0 1 2 3 4 5 ]    (((((())))))
  02:  [ 0 1 2 3 4 4 ]    ((((()()))))
  03:  [ 0 1 2 3 4 3 ]    ((((())())))
  04:  [ 0 1 2 3 4 2 ]    ((((()))()))
  05:  [ 0 1 2 3 4 1 ]    ((((())))())
  06:  [ 0 1 2 3 3 3 ]    (((()()())))
  07:  [ 0 1 2 3 3 2 ]    (((()())()))
  08:  [ 0 1 2 3 3 1 ]    (((()()))())
  09:  [ 0 1 2 3 2 3 ]    (((())(())))
  10:  [ 0 1 2 3 2 2 ]    (((())()()))
  11:  [ 0 1 2 3 2 1 ]    (((())())())
  12:  [ 0 1 2 3 1 2 ]    (((()))(()))
  13:  [ 0 1 2 3 1 1 ]    (((()))()())
  14:  [ 0 1 2 2 2 2 ]    ((()()()()))
  15:  [ 0 1 2 2 2 1 ]    ((()()())())
  16:  [ 0 1 2 2 1 2 ]    ((()())(()))
  17:  [ 0 1 2 2 1 1 ]    ((()())()())
  18:  [ 0 1 2 1 2 1 ]    ((())(())())
  19:  [ 0 1 2 1 1 1 ]    ((())()()())
  20:  [ 0 1 1 1 1 1 ]    (()()()()())
(End)
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 279.
  • N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, pp. 42, 49.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 305, 998.
  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 526.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 54 and 244.
  • Alexander S. Karpenko, Łukasiewicz Logics and Prime Numbers, Luniver Press, Beckington, 2006, p. 82.
  • D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3d Ed. 1997, pp. 386-388.
  • D. E. Knuth, The Art of Computer Programming, vol. 1, 3rd ed., Fundamental Algorithms, p. 395, ex. 2.
  • D. E. Knuth, TAOCP, Vol. 4, Section 7.2.1.6.
  • G. Polya and R. C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds, Springer-Verlag, 1987, p. 63.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998. [Comment from Neven Juric: Page 64 incorrectly gives a(21)=35224832.]
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041 (partitions), A000055 (unrooted trees), A000169, A001858, A005200, A027750, A051491, A051492, A093637, A187770, A199812, A255170, A087803 (partial sums).
Row sums of A144963. - Gary W. Adamson, Sep 27 2008
Cf. A209397 (log(A(x)/x)).
Cf. A000106 (self-convolution), A002861 (rings of these).
Column k=1 of A033185 and A034799; column k=0 of A008295.

Programs

  • Haskell
    import Data.List (genericIndex)
    a000081 = genericIndex a000081_list
    a000081_list = 0 : 1 : f 1 [1,0] where
       f x ys = y : f (x + 1) (y : ys) where
         y = sum (zipWith (*) (map h [1..x]) ys) `div` x
         h = sum . map (\d -> d * a000081 d) . a027750_row
    -- Reinhard Zumkeller, Jun 17 2013
    
  • Magma
    N := 30; P := PowerSeriesRing(Rationals(),N+1); f := func< A | x*&*[Exp(Evaluate(A,x^k)/k) : k in [1..N]]>; G := x; for i in [1..N] do G := f(G); end for; G000081 := G; A000081 := [0] cat Eltseq(G); // Geoff Bailey (geoff(AT)maths.usyd.edu.au), Nov 30 2009
    
  • Maple
    N := 30: a := [1,1]; for n from 3 to N do x*mul( (1-x^i)^(-a[i]), i=1..n-1); series(%,x,n+1); b := coeff(%,x,n); a := [op(a),b]; od: a; A000081 := proc(n) if n=0 then 1 else a[n]; fi; end; G000081 := series(add(a[i]*x^i,i=1..N),x,N+2); # also used in A000055
    spec := [ T, {T=Prod(Z,Set(T))} ]; A000081 := n-> combstruct[count](spec,size=n); [seq(combstruct[count](spec,size=n), n=0..40)];
    # a much more efficient method for computing the result with Maple. It uses two procedures:
    a := proc(n) local k; a(n) := add(k*a(k)*s(n-1,k), k=1..n-1)/(n-1) end proc:
    a(0) := 0: a(1) := 1: s := proc(n,k) local j; s(n,k) := add(a(n+1-j*k), j=1..iquo(n,k)); # Joe Riel (joer(AT)san.rr.com), Jun 23 2008
    # even more efficient, uses the Euler transform:
    with(numtheory): a:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*a(d), d=divisors(j)) *a(n-j), j=1..n-1))/ (n-1)) end:
    seq(a(n), n=0..50); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    s[ n_, k_ ] := s[ n, k ]=a[ n+1-k ]+If[ n<2k, 0, s[ n-k, k ] ]; a[ 1 ]=1; a[ n_ ] := a[ n ]=Sum[ a[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ a[ i ], {i, 1, 30} ] (* Robert A. Russell *)
    a[n_] := a[n] = If[n <= 1, n, Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-1}]/(n-1)]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
    a[n_] := a[n] = If[n <= 1, n, Sum[a[n - j] DivisorSum[j, # a[#] &], {j, n - 1}]/(n - 1)]; Table[a[n], {n, 0, 30}] (* Jan Mangaldan, May 07 2014, after Alois P. Heinz *)
    (* first do *) << NumericalDifferentialEquationAnalysis`; (* then *)
    ButcherTreeCount[30] (* v8 onward Robert G. Wilson v, Sep 16 2014 *)
    a[n:0|1] := n; a[n_] := a[n] = Sum[m a[m] a[n-k*m], {m, n-1}, {k, (n-1)/m}]/(n-1); Table[a[n], {n, 0, 30}] (* Vladimir Reshetnikov, Nov 06 2015 *)
    terms = 31; A[] = 0; Do[A[x] = x*Exp[Sum[A[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 11 2018 *)
  • Maxima
    g(m):= block([si,v],s:0,v:divisors(m), for si in v do (s:s+r(m/si)/si),s);
    r(n):=if n=1 then 1 else sum(Co(n-1,k)/k!,k,1,n-1);
    Co(n,k):=if k=1  then g(n)  else sum(g(i+1)*Co(n-i-1,k-1),i,0,n-k);
    makelist(r(n),n,1,12); /*Vladimir Kruchinin, Jun 15 2012 */
    
  • PARI
    {a(n) = local(A = x); if( n<1, 0, for( k=1, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff(A, n))}; /* Michael Somos, Dec 16 2002 */
    
  • PARI
    {a(n) = local(A, A1, an, i); if( n<1, 0, an = Vec(A = A1 = 1 + O(x^n)); for( m=2, n, i=m\2; an[m] = sum( k=1, i, an[k] * an[m-k]) + polcoeff( if( m%2, A *= (A1 - x^i)^-an[i], A), m-1)); an[n])}; /* Michael Somos, Sep 05 2003 */
    
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1,n, sumdiv(k,d, d*A[d]) * A[n-k+1] ) );
    concat([0], A) \\ Joerg Arndt, Apr 17 2014
    
  • Python
    from functools import lru_cache
    from sympy import divisors
    @lru_cache(maxsize=None)
    def divisor_tuple(n): # cached unordered tuple of divisors
        return tuple(divisors(n,generator=True))
    @lru_cache(maxsize=None)
    def A000081(n): return n if n <= 1 else sum(sum(d*A000081(d) for d in divisor_tuple(k))*A000081(n-k) for k in range(1,n))//(n-1) # Chai Wah Wu, Jan 14 2022
  • Sage
    @CachedFunction
    def a(n):
        if n < 2: return n
        return add(add(d*a(d) for d in divisors(j))*a(n-j) for j in (1..n-1))/(n-1)
    [a(n) for n in range(31)] # Peter Luschny, Jul 18 2014 after Alois P. Heinz
    
  • Sage
    [0]+[RootedTrees(n).cardinality() for n in range(1,31)] # Freddy Barrera, Apr 07 2019
    

Formula

G.f. A(x) satisfies A(x) = x*exp(A(x)+A(x^2)/2+A(x^3)/3+A(x^4)/4+...) [Polya]
Also A(x) = Sum_{n>=1} a(n)*x^n = x / Product_{n>=1} (1-x^n)^a(n).
Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d*a(d) ) * a(n-k+1).
Asymptotically c * d^n * n^(-3/2), where c = A187770 = 0.439924... and d = A051491 = 2.955765... [Polya; Knuth, section 7.2.1.6].
Euler transform is sequence itself with offset -1. - Michael Somos, Dec 16 2001
For n > 1, a(n) = A087803(n) - A087803(n-1). - Vladimir Reshetnikov, Nov 06 2015
For n > 1, a(n) = A123467(n-1). - Falk Hüffner, Nov 26 2015

A001372 Number of unlabeled mappings (or mapping patterns) from n points to themselves; number of unlabeled endofunctions.

Original entry on oeis.org

1, 1, 3, 7, 19, 47, 130, 343, 951, 2615, 7318, 20491, 57903, 163898, 466199, 1328993, 3799624, 10884049, 31241170, 89814958, 258604642, 745568756, 2152118306, 6218869389, 17988233052, 52078309200, 150899223268, 437571896993, 1269755237948, 3687025544605, 10712682919341, 31143566495273, 90587953109272, 263627037547365
Offset: 0

Views

Author

Keywords

Examples

			The a(3) = 7 mappings are:
1->1, 2->2, 3->3
1->1, 2->2, 3->1 (equiv. to 1->1, 2->2, 3->2, or 1->1, 2->1, 3->3, etc.)
1->1, 2->3, 3->2
1->1, 2->1, 3->2
1->1, 2->1, 3->1
1->2, 2->3, 3->1
1->2, 2->1, 3->1
		

References

  • F. Bergeron, G. Labelle, and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 41, 209.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.6.
  • R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.401.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 70, Table 3.4.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(combstruct): M[ 2671 ] := [ F,{F=Set(K), K=Cycle(T), T=Prod(Z,Set(T))},unlabeled ]:
    a:=seq(count(M[2671],size=n),n=0..27); # added by W. Edwin Clark, Nov 23 2010
  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,1,30}]],1];CoefficientList[Series[Product[1/(1-x^i)^c[[i]],{i,1,nn-1}],{x,0,nn}],x]  (* after code given by Robert A. Russell in A000081 *) (* Geoffrey Critzer, Oct 12 2012 *)
    max = 40; A[n_] := A[n] = If[n <= 1, n, Sum[DivisorSum[j, #*A[#]&]*A[n-j], {j, 1, n-1}]/(n-1)]; H[t_] := Sum[A[n]*t^n, {n, 0, max}]; F = 1 / Product[1 - H[x^n], {n, 1, max}] + O[x]^max; CoefficientList[F, x] (* Jean-François Alcover, Dec 01 2015, after Joerg Arndt *)
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
    A000081=concat([0], A);
    H(t)=subst(Ser(A000081, 't), 't, t);
    x='x+O('x^N);
    F=1/prod(n=1,N, 1 - H(x^n));
    Vec(F)
    \\ Joerg Arndt, Jul 10 2014

Formula

Euler transform of A002861.
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.9557652856519949747148... (Otter's rooted tree constant), c = 0.442876769782206479836... (for a closed form see "Mathematical Constants", p.308). - Vaclav Kotesovec, Mar 17 2015

Extensions

More terms etc. from Paul Zimmermann, Mar 15 1996
Name edited by Keith J. Bauer, Jan 07 2024

A027852 Number of connected functions on n points with a loop of length 2.

Original entry on oeis.org

0, 1, 1, 3, 6, 16, 37, 96, 239, 622, 1607, 4235, 11185, 29862, 80070, 216176, 586218, 1597578, 4370721, 12003882, 33077327, 91433267, 253454781, 704429853, 1962537755, 5479855546, 15332668869, 42983656210, 120716987723, 339596063606, 956840683968
Offset: 1

Views

Author

Christian G. Bower, Dec 14 1997

Keywords

Comments

Number of unordered pairs of rooted trees with a total of n nodes.
Equivalently, the number of rooted trees on n+1 nodes where the root has degree 2.
Number of trees on n nodes rooted at an edge. - Washington Bomfim, Jul 06 2012
Guy (1988) calls these tadpole graphs. - N. J. A. Sloane, Nov 04 2014
Number of unicyclic graphs of n nodes with a cycle length of two (in other words, a double edge). - Washington Bomfim, Dec 02 2020

Crossrefs

Column 2 of A033185 (forests of rooted trees), A217781 (unicyclic graphs), A339303 (unoriented linear forests) and A339428 (connected functions).

Programs

  • Maple
    with(numtheory): b:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= n-> (add(b(i) *b(n-i), i=0..n) +`if`(irem(n, 2)=0, b(n/2), 0))/2: seq(a(n), n=1..50);  # Alois P. Heinz, Aug 22 2008, revised Oct 07 2011
    # second, re-usable version
    A027852 := proc(N::integer)
        local dh, Nprime;
        dh := 0 ;
        for Nprime from 0 to N do
            dh := dh+A000081(Nprime)*A000081(N-Nprime) ;
        end do:
        if type(N,'even') then
            dh := dh+A000081(N/2) ;
        end if;
        dh/2 ;
    end proc: # R. J. Mathar, Mar 06 2017
  • Mathematica
    Needs["Combinatorica`"];nn = 30; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2 k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n - 1, i] i, {i, 1, n - 1}]/(n - 1); rt = Table[a[i], {i, 1, nn}]; Take[CoefficientList[CycleIndex[DihedralGroup[2], s] /. Table[s[j] -> Table[Sum[rt[[i]] x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], {2, nn}]  (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
    b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d b[d], {d, Divisors[j]}] b[n-j], {j, 1, n-1}])/(n-1)];
    a[n_] := (Sum[b[i] b[n-i], {i, 0, n}] + If[Mod[n, 2] == 0, b[n/2], 0])/2;
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 30 2018, after Alois P. Heinz *)
  • PARI
    seq(max_n)= { my(V = f = vector(max_n), i=1,s); f[1]=1;
    for(j=1, max_n - 1, f[j+1] = 1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1]));
    for(n = 1, max_n, s = sum(k = 1, (n-1)/2, ( f[k] * f[n-k] ));
    if(n % 2 == 1, V[i] = s, V[i] = s + (f[n/2]^2 + f[n/2])/2); i++); V };
    \\ Washington Bomfim, Jul 06 2012 and Dec 01 2020

Formula

G.f.: A(x) = (B(x)^2 + B(x^2))/2 where B(x) is g.f. of A000081.
a(n) = Sum_{k=1..(n-1)/2}( f(k)*f(n-k) ) + [n mod 2 = 0] * ( f(n/2)^2+f(n/2) ) /2, where f(n) = A000081(n). - Washington Bomfim, Jul 06 2012 and Dec 01 2020
a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = A187770 = 0.43992401257102530404090339... . - Vaclav Kotesovec, Sep 12 2014
2*a(n) = A000106(n) + A000081(n/2), where A(.)=0 if the argument is non-integer. - R. J. Mathar, Jun 04 2020

Extensions

Edited by Christian G. Bower, Feb 12 2002

A048888 a(n) = Sum_{m=1..n} T(m,n+1-m), array T as in A048887.

Original entry on oeis.org

0, 1, 2, 4, 7, 13, 23, 42, 76, 139, 255, 471, 873, 1627, 3044, 5718, 10779, 20387, 38673, 73561, 140267, 268065, 513349, 984910, 1892874, 3643569, 7023561, 13557019, 26200181, 50691977, 98182665, 190353369, 369393465, 717457655
Offset: 0

Views

Author

Keywords

Comments

From Marc LeBrun, Dec 12 2001: (Start)
Define a "numbral arithmetic" by replacing addition with binary bitwise inclusive-OR (so that [3] + [5] = [7] etc.) and multiplication becomes shift-&-OR instead of shift-&-add (so that [3] * [3] = [7] etc.). [d] divides [n] means there exists an [e] with [d] * [e] = [n]. For example the six divisors of [14] are [1], [2], [3], [6], [7] and [14]. Then it appears that this sequence gives the number of proper divisors of [2^n-1]. Conjecture confirmed by Richard C. Schroeppel, Dec 14 2001. (End)
The number of "prime endofunctions" on n points, meaning the cardinality of the subset of the A001372(n) mappings (or mapping patterns) up to isomorphism from n (unlabeled) points to themselves (endofunctions) which are neither the sum of prime endofunctions (i.e., whose disjoint connected components are prime endofunctions) nor the categorical product of prime endofunctions. The n for which a(n) is prime (n such that the number of prime endofunctions on n points is itself prime) are 2, 4, 5, 6, 9, 13, 19, ... - Jonathan Vos Post, Nov 19 2006
For n>=1, compositions p(1)+p(2)+...+p(m)=n such that p(k)<=p(1)+1, see example. - Joerg Arndt, Dec 28 2012

Examples

			From _Joerg Arndt_, Dec 28 2012: (Start)
There are a(6)=23 compositions p(1)+p(2)+...+p(m)=6 such that p(k)<=p(1)+1:
[ 1]  [ 1 1 1 1 1 1 ]
[ 2]  [ 1 1 1 1 2 ]
[ 3]  [ 1 1 1 2 1 ]
[ 4]  [ 1 1 2 1 1 ]
[ 5]  [ 1 1 2 2 ]
[ 6]  [ 1 2 1 1 1 ]
[ 7]  [ 1 2 1 2 ]
[ 8]  [ 1 2 2 1 ]
[ 9]  [ 2 1 1 1 1 ]
[10]  [ 2 1 1 2 ]
[11]  [ 2 1 2 1 ]
[12]  [ 2 1 3 ]
[13]  [ 2 2 1 1 ]
[14]  [ 2 2 2 ]
[15]  [ 2 3 1 ]
[16]  [ 3 1 1 1 ]
[17]  [ 3 1 2 ]
[18]  [ 3 2 1 ]
[19]  [ 3 3 ]
[20]  [ 4 1 1 ]
[21]  [ 4 2 ]
[22]  [ 5 1 ]
[23]  [ 6 ]
(End)
		

Crossrefs

Programs

  • PARI
    N = 66;  x = 'x + O('x^N);
    gf = sum(n=0,N,  (1-x^n)*x^n/(1-2*x+x^(n+1)) ) + 'c0;
    v = Vec(gf);  v[1]-='c0;  v
    /* Joerg Arndt, Apr 14 2013 */

Formula

G.f.: Sum_{k>0} x^k*(1-x^k)/(1-2*x+x^(k+1)). - Vladeta Jovovic, Feb 25 2003
a(m) = Sum_{ n=2..m+1 } Fn(m) where Fn is a Fibonacci n-step number (Fibonacci, tetranacci, etc.) indexed as in A000045, A000073, A000078. - Gerald McGarvey, Sep 25 2004

A339428 Triangle read by rows: T(n,k) is the number of connected functions on n points with a loop of length k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 6, 3, 1, 1, 20, 16, 9, 4, 1, 1, 48, 37, 23, 11, 4, 1, 1, 115, 96, 62, 35, 14, 5, 1, 1, 286, 239, 169, 97, 46, 18, 5, 1, 1, 719, 622, 451, 282, 145, 63, 21, 6, 1, 1, 1842, 1607, 1217, 792, 440, 206, 80, 25, 6, 1, 1
Offset: 1

Views

Author

Andrew Howroyd, Dec 03 2020

Keywords

Examples

			Triangle begins:
    1;
    1,   1;
    2,   1,   1;
    4,   3,   1,   1;
    9,   6,   3,   1,   1;
   20,  16,   9,   4,   1,  1;
   48,  37,  23,  11,   4,  1,  1;
  115,  96,  62,  35,  14,  5,  1, 1;
  286, 239, 169,  97,  46, 18,  5, 1, 1;
  719, 622, 451, 282, 145, 63, 21, 6, 1, 1;
  ...
		

Crossrefs

Programs

  • PARI
    \\ TreeGf is A000081 as g.f.
    TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    ColSeq(n,k)={my(r=TreeGf(max(0,n+1-k))); Vec(sumdiv(k, d, eulerphi(d)*subst(r + O(x*x^(n\d)), x, x^d)^(k/d))/k, -n)}
    M(n, m=n)=Mat(vector(m, k, ColSeq(n,k)~))
    { my(T=M(12)); for(n=1, #T~, print(T[n,1..n])) }

Formula

G.f. of k-th column: (1/k)*Sum_{d|k} phi(d) * r(x^d)^(k/d) where r(x) is the g.f. of A000081.

A126285 Number of partial mappings (or mapping patterns) from n points to themselves; number of partial endofunctions.

Original entry on oeis.org

1, 2, 6, 16, 45, 121, 338, 929, 2598, 7261, 20453, 57738, 163799, 465778, 1328697, 3798473, 10883314, 31237935, 89812975, 258595806, 745563123, 2152093734, 6218854285, 17988163439, 52078267380, 150899028305, 437571778542, 1269754686051, 3687025215421
Offset: 0

Views

Author

Christian G. Bower, Dec 25 2006 based on a suggestion from Jonathan Vos Post

Keywords

Comments

If an endofunction is partial, then some points may be unmapped (or mapped to "undefined").
The labeled version is left-shifted A000169. - Franklin T. Adams-Watters, Jan 16 2007

Crossrefs

Programs

  • Mathematica
    nmax = 28;
    a81[n_] := a81[n] = If[n<2, n, Sum[Sum[d*a81[d], {d, Divisors[j]}]*a81[n-j ], {j, 1, n-1}]/(n-1)];
    A[n_] := A[n] = If[n<2, n, Sum[DivisorSum[j, #*A[#]&]*A[n-j], {j, 1, n-1} ]/(n-1)];
    H[t_] := Sum[A[n]*t^n, {n, 0, nmax+2}];
    F = 1/Product[1 - H[x^n], {n, 1, nmax+2}] + O[x]^(nmax+2);
    A1372 = CoefficientList[F, x];
    a[n_] := Sum[a81[k] * A1372[[n-k+2]], {k, 0, n+1}];
    Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Aug 18 2018, after Franklin T. Adams-Watters *)
  • Sage
    Pol. = InfinitePolynomialRing(QQ)
    @cached_function
    def Z(n):
        if n==0: return Pol.one()
        return sum(t[k]*Z(n-k) for k in (1..n))/n
    def pmagmas(n,k=1): # number of partial k-magmas on a set of n elements up to isomorphism
        P = Z(n)
        q = 0
        coeffs = P.coefficients()
        count = 0
        for m in P.monomials():
            p = 1
            V = m.variables()
            T = cartesian_product(k*[V])
            for t in T:
                r = [Pol.varname_key(str(u))[1] for u in t]
                j = [m.degree(u) for u in t]
                D = 1
                lcm_r = lcm(r)
                for d in divisors(lcm_r):
                    try: D += d*m.degrees()[-d-1]
                    except: break
                p *= D^(prod(r)/lcm_r*prod(j))
            q += coeffs[count]*p
            count += 1
        return q
    # Philip Turecek, Nov 27 2023

Formula

Euler transform of A002861 + A000081 = [1, 2, 4, 9, 20, 51, 125, 329, 862, 2311, ... ] + [ 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, ...] = A124682.
Convolution of left-shifted A000081 with A001372. - Franklin T. Adams-Watters, Jan 16 2007
a(n) ~ c * d^n / sqrt(n), where d = 2.95576528565... is the Otter's rooted tree constant (see A051491) and c = 1.309039781943936352117502717... - Vaclav Kotesovec, Mar 29 2014

A002862 Number of nonisomorphic connected functions with no fixed points, or proper rings with n edges.

Original entry on oeis.org

0, 1, 2, 5, 11, 31, 77, 214, 576, 1592, 4375, 12183, 33864, 94741, 265461, 746372, 2102692, 5938630, 16803610, 47639902, 135288198, 384812502, 1096141974, 3126648842, 8929715592, 25533447030, 73090099586, 209438176485, 600721031344, 1724585494225
Offset: 1

Views

Author

Keywords

References

  • R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.399.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

(A002861) minus (A000081).

Programs

  • Mathematica
    Needs["Combinatorica`"]; nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];cfd=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,2,30}]],1]  (* Geoffrey Critzer, Oct 14 2012, after code given by Robert A. Russell in A000081 *)

Extensions

More terms and better description from Christian G. Bower

A116950 Number of functional patterns on n elements; or digraphs with maximum outdegree 1, n arrows and every point connected to an arrow.

Original entry on oeis.org

1, 2, 7, 20, 61, 174, 514, 1478, 4303, 12437, 36084, 104494, 303167, 879283, 2552803, 7413583, 21544347, 62635823, 182199853, 530228946, 1543761513, 4496523995, 13102414665, 38193626823, 111375529695, 324891970936, 948051861938, 2767336312386, 8080206646244
Offset: 0

Views

Author

Keywords

Comments

A001372 counts functional patterns from a set with n elements to itself; A000041 (partition function) counts functional patterns from a set with n elements to a disjoint set; this is the general case where the range may overlap the domain but may also include other values.

Examples

			For n=2 there are the following 7 digraphs:
o-+.o-+ o->o-+ o->o o-+.o->o o->o->o o->o o->o
^.|.^.| ...^.| ^..| ^.|..... ....... ...^ ....
+-+.+-+ ...+-+ +--+ +-+..... ....... o--+ o->o
		

Crossrefs

Programs

  • Mathematica
    nmax = 750;
    A002861 = Cases[Import["https://oeis.org/A002861/b002861.txt", "Table"], {, }][[;; nmax + 2, 2]];
    A000081 = Cases[Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[;; nmax + 2, 2]];
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
    b[n_] := A002861[[n]] + A000081[[n + 2]];
    a = etr[b];
    a[0] = 1;
    a /@ Range[0, nmax](* Jean-François Alcover, Mar 13 2020 *)

Formula

Euler transform of A002861(n) + A000081(n+1).
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.95576528565199497471481752412..., c = 3.435908969217935496995961718... . - Vaclav Kotesovec, Sep 10 2014
Showing 1-10 of 19 results. Next